
10º Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações 70

Failure Prediction based on
Monitoring Sequences of Actions and Action Duration

Giovani Farias1, Ramon Fraga Pereira1, Lucas Hilgert1,
Felipe Meneguzzi1, Renata Vieira1, and Rafael H. Bordini1

1Pontifical Catholic University of Rio Grande do Sul – PUCRS
School of Informatics – FACIN – Porto Alegre, Brazil

{giovani.farias,ramon.pereira}@acad.pucrs.br
lucaswhilgert@gmail.com

{felipe.meneguzzi,renata.vieira,rafael.bordini}@pucrs.br

Abstract. An agent can attempt to achieve multiple goals and each goal can be
achieved by applying various different plans. Anticipating failures in agent plan
execution is important to enable an agent to develop strategies to avoid or cir-
cumvent such failures, allowing the agent to achieve its goal. Plan recognition
can be used to infer which plans are being executed from observations of se-
quences of activities being performed by an agent. Symbolic Plan Recognition
is an algorithm that represents knowledge about the agents under observation
in the form of a plan library. In this paper, we use this symbolic algorithm to
find out which plan the agent is performing and we develop a failure prediction
system, based on information available in the plan library and in a simplified
calendar which manages the goals the agent has to achieve. This failure pre-
dictor is able to monitor the sequence of agent actions and detects if an action
is taking too long or does not match the plan that the agent was expected to be
performing.

1. Introduction
Recently, the number of real-world applications that deal with the need to recog-
nise goals and plans from agent observations is on the rise. These applications can
be found in fields such as human assisted living [Masato 2012], interface agent sys-
tems [Armentano and Amandi 2007], human-computer interaction [Hong 2001], traffic
monitoring [Pynadath and Wellman 1995], and others. However, techniques that include
the task of anticipating failures during agent plan execution have received relatively little
attention. Multi-agent environments are dynamic since they are in a constant estate of
change resulting from agents’ actions. When these changes occur, a plan that was ex-
pected to work before, may fail. Thus, anticipating from agent observations when a plan
is going to fail can be an important mechanism during the plan recognition process. Plan
recognition approaches often do not make such inferences, which means that when an
agent has no intention to complete or finish a plan these approaches continuously attempt
to recognise what the agent is doing. In daily activities most people interrupt the plan that
they are performing for some reason, such as, getting their attention drawn to something
else, getting distracted by other events, or being interrupted by an emergency that needs
immediate attention. In a plan recognition context, we consider that a plan is going to
fail when the sequence of actions is taking too long or does not match the plan which the

10º Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações 71

observed agent should be performing at the moment. Our approach uses a calendar for
managing some of the agent’s goals over the near future, and when that information is
available it facilitates our failure checking procedure, as well as plan recognition disam-
biguation. A plan failure can occur when an agent interrupts its current plan execution
due to concurrent plans that need attention, or when an agent has to deal with conflicting
plans. In this case, a mechanism to anticipate failures during agent plan execution can
be useful in several situations, for example, helping an agent stay focused on a particular
plan, or detecting when an agent is deviating from its regular activities.

Research on planning has focused on the modelling of actions with duration
and stochastic outcomes, both theoretically as variants of Markov Decision Processes
(MDP) [Mausam and Weld 2008], and domain description languages that express tem-
poral planning (e.g., PDDL 2.1 [Fox and Long 2003], an extension of PDDL. In the lit-
erature, a similar approach to failure prediction, as we introduce in this paper, is plan
abandonment detection. Geib and Goldman [Geib and Goldman 2003] proposes a for-
mal model to recognise goal/plan abandonment in the plan recognition context, based
on the PHATT (Probabilistic Hostile Agent Task Tracker) model [Goldman et al. 1999].
This formal model estimates the probability that a set of observed actions in sequence
contributes to the goal being monitored, furthermore, Geib [Geib 2002] addresses some
issues and requirements for dealing with plan abandonment, as well as intention recogni-
tion in the elderly-care domain.

In this paper we develop an approach to predict plan failure by monitoring agent’s
actions during its plan execution. Essentially, our approach to plan failure prediction fea-
tures a mechanism that is composed of three modules. The first module is responsible for
recognising the plan that the observed agent is executing. The second module checks if
plans assigned to observed agent are being executed as scheduled in a predefined calendar.
Lastly, the third module checks if actions are being executed as expected (i.e., not taking
too long, and matching the current monitored plan). Thus, this approach can be used
in complex software system, including health-care applications to improve functional-
ity, such as activity recognition and task reallocation [Panisson et al. 2015] among agents
representing human users, who collaborate to take care of a patient, by detecting if a per-
son responsible for some activity of the patient is following his scheduled appointments;
detecting problems, that may prevent the person in charge to attend to his obligations and
send warning to the system.

2. Plan Recognition
Plan recognition can be defined as the task of recognising the intentions of an agent based
on the available evidence, that is, agent actions, explicit statements about intentions, and
agent preferences [Kautz and Allen 1986]. Plan recognition focuses on mechanisms for
recognising the unobservable state of an agent, given observations of its interaction with
its environment. In other words, a plan recognition system must have a mechanism that is
capable of inferring agent intentions by observing the agent actions in the environment.
This mechanism retrieves, from a given set of observations, one or more hypotheses of the
agent’s current plan of action. The practical knowledge used to infer plans is domain de-
pendent and, therefore, is commonly specified beforehand for each specific domain. This
domain dependent information is usually encoded as two parts of inputs for the recog-
niser: a set of observed actions and a set of plans and goals. More specifically, the inputs

10º Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações 72

to a plan recogniser are a set of goals that the recogniser expects the agent to carry out in
the domain, a set of plans describing the way in which the agent can reach each goal, and
a sequence of actions currently being performed by the observed agent (i.e, observations
of agent actions). Thus, the plan recognition process itself consists in inferring the agent
plan and determining how the observed actions contribute to performing it.

Symbolic plan recognition is a type of plan recognition mechanism that narrows
the set of candidate intentions by eliminating the plans that are incompatible with current
agent actions. Plans make up a plan library and can include preconditions, effects, and
sub-goals. Generally, symbolic approaches assume that the observer has complete knowl-
edge of the agent’s possible plans and goals. Symbolic approaches handle the problem
of plan recognition by determining which set of goals is consistent with the observed ac-
tions. Algorithms to recognise the intentions and plans executed by autonomous agents
have long been studied in the Artificial Intelligence field under the general term of plan
recognition. Kautz and Allen [Kautz and Allen 1986] focus on symbolic methods provid-
ing a formal theory of plan recognition. Usually, these approaches specify a plan library
as an action hierarchy in which plans are represented as a plan graph with top-level actions
as root nodes, and plan recognition is then reduced to a graph covering problem. The plan
recognition process attempts to find a minimal set of top plans that explain the observa-
tions. For a good overview of plan recognition in general, see Carberry [Carberry 2001],
and for the most recent research in the field of plan, intention, and activity recognition,
see Sukthankar et al. [Sukthankar et al. 2014].

3. Symbolic Plan Recognition

The Symbolic Plan Recognition (SBR) [Avrahami-Zilberbrand and Kaminka 2005] is a
method for complete, symbolic plan recognition that uses a plan library, which encodes
agent knowledge in the form of plans. SBR extracts coherent hypotheses from a multi-
featured observation sequence using a Feature Decision Tree (FDT) to efficiently match
these observations to plan steps1 in a plan library. An FDT is a decision tree, where
each node represents an observable feature and each branch represents one possible value
of this feature. Determining all matching plans from a set of observations features is
efficiently achieved by traversing the FDT top-down until a leaf node is reached. Each
leaf node is a pointer to a plan step in the plan library.

A plan library is represented by a single-root directed acyclic connected graph,
which includes all possible plans that an observed agent may execute. The term plan is
used here in a broader sense, representing behaviours, reaction plans, and recipes. Typ-
ically, a plan library has a single root node in which its children are top-level plans and
all other nodes are simply plan steps. Furthermore, in a plan library, sequential edges
specify the expected temporal order of a plan execution sequence and decomposition
edges decompose plan steps into alternative sub-steps. The plan library has no hierar-
chical cycles. However, plans may have a (sequential) self-cycle, allowing a plan step
to be executed during multiple subsequent time stamps. Each agent action generates a
set of conditions on observable features that are associated with that action. When these
conditions are included, the observations match particular plan steps. Figure 1 shows a
plan library example based on Activities of Daily Living (ADL), which is a term used

1In this paper, we use “plan step” as a synonym for “action”.

10º Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações 73

in health-care to refer to daily self-care activities of people. This plan library shows
sequential links represented by dashed arrows and decomposition links represented by
solid arrows. For instance, there is a decomposition link between managing-medication
and getting-up, and a sequential link between getting-up and using-bathroom. The top-
level plans are managing-medication, and leisure. Figure 1 does not show the set of
conditions on observable features associated with plan steps, and circled numbers denote
time stamps (e.g., using-bathroom has been considered a hypothesis at time stamp 2).
The decomposition edges are shown only to the first child plan. Thus, the path root !
managing-medication ! having-lunch ! at-kitchen ! taking-medication can be a hy-
pothesis for the current plan being executed by an observed agent.

Figure 1. Example of plan library based on ADL.

4. Failure Predictor Components

The failure predictor is responsible for predicting plan failures during execution of an
agent goal, more specifically, it tracks the execution of a goal and attempts to identify
elements which can lead it to fail, for example, an action taking significantly more time
than expected to conclude. The failure predictor is composed of three modules: the SBR
module, which is responsible for recognising the plan that is being executed by the ob-
served agent; an Appointment Controller module, which checks if the goals that
are known to have been assigned to the agent are being executed as scheduled; and a
Plan-Step Controller module, that checks if the plan steps (that compose the
plan) are being executed as expected. These modules are presented, respectively, in Sub-
sections 4.1, 4.2, and 4.3.

10º Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações 74

4.1. SBR Component

The SBR component implements the symbolic recogniser presented in Section 3. It is
responsible for recognising the plan that an agent is currently executing, and it generates
hypotheses about possible plans while the recognition is still not possible. This informa-
tion is represented both as a list of candidate plans and as a hypotheses graph. As input,
the SBR component receives observations, i.e., sets of contextual information about the
observed agent and its actions. Examples of observations include the agent’s global posi-
tioning coordinates, whether or not the agent is moving, or whether the agent is approach-
ing a particular place, and any other contextual information that can be generated by an
activity recognition process. As output, this component provides both the list of candidate
plans and the hypotheses graph.

4.2. Appointment Controller

A plan library contains all known plans (agent goals) for a given domain, together with
the sequence of actions that compose them, however, it does not define the time that an
agent is expected to execute each plan, neither does it contain the time interval in which
the plans have to be executed. These are essential information for the system to ensure
that plans are being executed in an appropriate manner and to be able to detect potential
failures in plan execution. The Appointment Controller component implements
a simplified calendar which manages the agent goals and plans, it defines which plans of
the plan library an agent is known to be responsible for, and at which time the agent is
expected to execute some of them (to the extent that this is known in particular domains).
This component also helps in disambiguation of candidate plans and in the early predic-
tion of plan failures. It should be noted that only domain-related plans are kept in this
individual calendar. Each entry (i.e., agent goal) in the Appointment Controller
is composed of the following information:

• Starting date – Date in which the goal or plan is expected to be started;
• Ending date – Date in which the goal or plan is expected to end;
• Title – Title of goal or plan (e.g., “managing-medication”);
• Description (Optional) – Brief textual description of the goal (e.g., “take medicine on

time”);
• Related Plan ID – Unique identifier of the relevant plan (i.e., the plan to achieve this

goal), which corresponds to a top plan in the plan library (e.g., “id:p1”);
• Tolerance – Margin of error for the beginning and end times of each goal, e.g., some

goals can start or end 5 minutes before (or after) the time for which it was originally
scheduled without danger of the plan failing. This tolerance is necessary because, in
real-world situations, goals usually do not start (or end) at the exact scheduled time.

Regarding schedule times, both the starting and ending dates of the goals are com-
posed of day, month, year, hour, and minute (smaller units such as second, for example,
are not necessary). The tolerance interval can be expressed in various time measures (e.g.,
hours or minutes).

4.3. Plan-Step Controller

The Plan-Step Controller monitors and analyses the plan execution (sequence
of actions) to detect anomalies that can lead the plan to fail. The information necessary

10º Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações 75

for the Plan-Step Controller to operate is obtained through the SBR component,
which provides information about the current plan and actions being performed; the plan
library; and the file that contains information about expected time for each action ex-
ecution. The plan library contains the known plans and the actions which need to be
performed in a given plan for it finish successfully, besides the sequence in which these
actions must be performed for a plan to be considered completed. However, it does not de-
fine when a plan should finish, neither the time in which actions must be executed. This
type of information is important to detect anomalous behaviour during plan execution,
such as:

• Plan Interruption – The plan execution is interrupted without all actions being com-
pleted;

• Time Exceeded – When an action takes significantly more time than expected, this
typically leads to plan failure (e.g., being in a traffic jam);

• Inconsistent Sequence – The sequence of observed actions is inconsistent with the
expected plan path in the plan library.

It is important to keep track of the actions being performed in order to be able to
predict whether a plan is following the expected execution path. Thus, it is possible to
identify a probable failure in plan execution and generate the required warnings according
to failure type. The entry in file with data about expected execution time of each action is
composed of the following information:

• Plan-Step ID – Unique identifier of related action, which corresponds to a plan step in
the plan library (e.g., “p1.11”);

• Label – A label for identification the action (plan step) from the plan library (e.g.,
“taking-medication”);

• Time – Time that an action often take to be performed;
• Tolerance – A value whereby the ending time of the action is allowed to be delayed.

For instance, an action can take 5 minutes in addition to its normal time to be per-
formed. This tolerance is important for a real-world situation where actions can often
take more time to be performed than an exact specified time.

5. Component Integration
The failure predictor components are integrated as presented in Figure 2. When the SBR
(Section 3) is not able to determine the current plan (no plan or multiple plans were recog-
nised) the Appointment Controller component is consulted (using the output of
the plan recogniser). First, the component checks if there are plans scheduled for the mo-
ment in which it was consulted and, later, if a scheduled plan is in the list of candidate
plans. During this verification the following situations might occur:

• There is no agent goal scheduled for the current time. In this situation, the Appoint-
ment Controller component has nothing to do, so the main cycle ends and the
system awaits for a new observation;

• There is a plan scheduled for the current time, however, the candidate plan list is empty
(no plans were recognised). In this case, the Appointment Controller compo-
nent detects a failure in the scheduled goal execution (i.e., the goal that was expected
to be executed at time the calendar was consulted) and a warning must be sent to the
system, which should be able to handle this plan failure;

10º Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações 76

Figure 2. Components Integration.

• There is a plan scheduled for the current time and there are multiple plans in candidate
plans list. In this case, the Appointment Controller verifies if the plan related
to scheduled goal is present in plan candidate list. During this verification two situations
might happen:
– The plan related to the scheduled goal is in candidate plans list, thus, the referred

plan is assumed to be the one that is currently being executed by agent;
– The plan related to the scheduled goal is not in candidate plans list. In this situation,

a failure is detected in the scheduled goal execution as it is not being executed by
the agent as it should. Then, a warning related to the scheduled goal is sent to the
Handling Plan Inconsistency step of the main cycle, in which the system
will handle the plan related to the failing goal.

Regarding, goal scheduling in this initial implementation does not allow overlap-
ping of goals (i.e., goals with coincident time intervals). That is, a new goal will not be
added to calendar if it overlaps with an existing one. However, there is an exception for
the overlapping rule regarding the starting and ending times. Two goals (A and B) are not
considered as overlapping if the starting time of A is equal to the ending time of B. This
exception is convenient, as sequential plans are usually scheduled with no time interval
among them, e.g., A (1:00 p.m. to 2:00 p.m.) and B (2:00 p.m. to 4:00 p.m.) or A (4:00
p.m. to 5:00 p.m.) and B (2:00 p.m. to 4:00 p.m.).

The Plan-Step Controller is unable to disambiguate the list of candidate
plans, thus, both SBR and Appointment Controller must inform only one goal
and one plan step in each iteration with it. The planController (Algorithm 1) is part

10º Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações 77

of this component and responsible for handling such information, using the plan library
and the data file with the plan step running times, in order to analyse the plan sequence
(based on plan steps) and monitor the running time of each action. In this manner, it is
possible to detect and report possible changes in plan execution in order to avoid possible
failures.

Algorithm 1
planController(Current Goal g, Current PS p, List l)

1: Get plan step duration from l;
2: analyseCurrentGoal(g);
3: analyseCurrentPlanStep(p);
4: Inform possible failure;

Monitoring of the current plan is performed by the analyseCurrentGoal
(Algorithm 2). Initially, the current goal is updated based on information received by
SBR (Line 1) and a test is performed to check if it is a valid value (Line 2), after that,
the algorithm checks if the current goal is equal to the previous goal (Line 5) that the
agent was trying to achieve. If they are the same, it means agent is still carrying out the
actions to achieve it, otherwise, the agent started to perform a new goal with a new plan.
In this case, the algorithm has to verify if the previous goal was achieved successfully
(Line 11) and the information in the plan library is used to check if the last plan step
(of the previous goal) is a leaf node. If this is the case, it means that the plan was fully
executed and probably has finished successfully, otherwise, the agent may have stopped
performing the plan before its end or the agent is executing more than one plan at the same
time, thus, the algorithm should send a warning about this possible failure (Line 15).

Algorithm 2
analyseCurrentGoal(Current Goal g)

1: current goal g;
2: if current goal = null then
3: No goal can be checked;
4: else
5: if current goal = previous goal then
6: Goal g keeps running;
7: else
8: if previous goal = null then
9: Goal g started;

10: else
11: if previous goal has finished in a leaf node then
12: previous goal finished and g started;
13: else
14: Goal g started;
15: previous goal stopped before ending;

The analyseCurrentPlanStep (Algorithm 3) is responsible for monitoring
the execution of each action related to a goal, i.e., it analyses the sequence of execution

10º Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações 78

and the run time of each plan step. Initially, the current plan step is updated based on
information received by SBR. The consistency of this information is checked and the
algorithm then checks if the current plan step is equal to the previous plan step which the
agent was performing (Line 5). If they are equal, it means that the agent is still performing
the same plan step, thus, the algorithm has to check if the current action is within the time
specified in the data file with the plan step running times. The checkExecutionTime
(Line 7) receives as input the current plan step and checks if its run time is within the
specified time, taking into account the specified tolerance for each action. If the agent is
taking too long to perform some action, the algorithm detects this as unexpected behaviour
and warns the system.

Algorithm 3
analyseCurrentPlanStep(Current Plan Step p)

1: current plan step p;
2: if current plan step = null then
3: No plan step can be checked;
4: else
5: if current plan step = previous plan step then
6: current plan step keeps running;
7: checkExecutionTime(current plan step);
8: else
9: if isValidSequence(previous plan step, current plan step) then

10: Current execution path is right;
11: else
12: Current execution path has changed;
13: Update current goal start time;
14: previous plan step current plan step;

When the failure predictor detects a new action being performed by an agent, it is
necessary to check if this action is part of the sequence of actions needed to accomplish
the current goal (Line 9). The isValidSequence (Algorithm 4) uses the information
in the plan library to check if the current plan step is part of a valid sequence of actions
to achieve the current goal, receiving as input the previous plan step and the current plan
step. If the current plan step contains a sequential parent node and this parent node is the
previous plan step, it means the execution path is correct, otherwise, the current plan step
does not match the execution path done so far to achieve the current goal.

Detecting whether the sequence of execution is valid is more complicated when
the current plan step has a decomposition parent node, because the previous plan step does
not have to be a parent node of the current plan step, but only be part of the current plan
execution and follow the temporal order of the execution path. The isPreviousNode
(Algorithm 5) algorithm receives as input the previous plan step and the current plan step.
It checks the entire running sequence from current plan step node to previous plan step
node in order to analyse the temporal order to determine if the current plan step is a valid
sequence for current goal execution.

10º Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações 79

Algorithm 4
isValidSequence(Parent Node parent, Child Node child)

1: if child has a sequential parent then
2: seq parent child sequential parent;
3: if seq parent 6= parent then
4: return false;
5: else
6: return true;
7: else if child has a decomposition parent then
8: dec parent child decomposition parent;
9: if dec parent = parent then

10: return true;
11: else
12: if isPreviousNode(parent, child) then
13: return true;
14: else
15: return false;
16: else
17: return false;

Algorithm 5
isPreviousNode(Parent Node parent, Child Node child)

1: if child has a sequential parent then
2: seq parent child sequential parent;
3: if seq parent = parent then
4: return true;
5: else
6: return isPreviousNode(parent, seq parent);
7: else if child has a decomposition parent then
8: dec parent child decomposition parent;
9: if dec parent = parent then

10: return true;
11: else
12: return isPreviousNode(parent, dec parent);
13: else
14: return false;

6. Experiments
The objective of experiments is to show how our approach provides helpful reminders by
monitoring and anticipating plan failure from agent observations, in this way, we model
part of a scenario that represents agent behaviour based on Activities of Daily Living.
These activities correspond to user single actions (e.g., getting-up, watching-tv, reading-
a-book, taking-medication, using-bathroom), in this scenario, there is a person with dis-
abilities who lives alone and needs constant monitoring to perform his daily activities,
using plan library formalism, we model a set of plans for representing possible behaviour
of this person, where some of these plans are shown in Figure 1.

10º Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações 80

To exemplify how our approach works, we schedule the top-level plan managing-
medication to be performed between 7:00 a.m. and 7:30 a.m., in which, this schedule
information is in the calendar (Appointment Controller). Considering the current
part of the day as early morning, the sequence of activities to be performed in order to
accomplish the plan managing-medication is: getting-up! using-bathroom! at-living-
room! at-kitchen! taking-medication. According to this sequence, the user must move
through the living room (i.e., plan step at-living-room) to complete the plan, however,
this plan step is also part of the top-level plan leisure, in this case, the SBR component
returns both top-level plans managing-medication and leisure when the current plan step
is at-living-room. To deal with this ambiguity, our approach uses the Appointment
Controller component to check if there is a top-level plan scheduled for the current
time, if so, it discards those plans that are not scheduled for this time.

⌥ ⌅
1 ...
2 [Info]:Current Top-Level Plan: managing-medications
3 [Info]:Current Plan Step (PS): at-living-room
4 [Info]:Checking time [at-living-room]
5 [Info]:PS [at-living-room] started at 7:15am
6 [Info]:PS [at-living-room] is running for 5 minutes
7 [Info]:PS [at-living-room] average time 3 minutes | tolerance 1 minute
8 [Warn]:PS [at-living-room] is taking too long
9 ...⌃ ⇧

Listing 1. Example of Failure Predictor Output.

The program output, presented in Listing 1, represents part of execution of the
failure predictor approach, in a scenario where the user must take a medication in a strict
time and during the plan execution the user’s attention drawn to something else (e.g., the
user stays at living room watching TV) and forgets to take his medication. In this case,
the current top-level plan is managing-medication (Line 2) and the current plan step is
at-living-room (Line 3). The failure predictor monitors the plan execution (Lines 4-6) and
based on information in the Plan-Step Controller, i.e., average time of execution
for each plan step and a time tolerance (Line 7), it is able to detect anomalies in plan
execution and informs the system to try to address and correct these possible failures. In
this example, the algorithm detects that a plan step is taking too long to be performed,
then an alert message is generated (Line 8).

7. Conclusion

In this paper, we have developed a failure predictor based on plan recognition techniques
and a calendar that includes some of the plans that the agent is known to be required
to execute over time. Our main contribution is a system that anticipates plan failures
by monitoring a sequence of agent actions during its plan execution. We have used this
predictor as part of a system to support collaborative work in a scenario where family
members and professional carers support an elderly person with a debilitating disease
who lives alone. Although we currently only deal with plan failure prediction, as future
work we can enable our system to elaborate alternative plans to avoid the detected failures
(e.g., using planning techniques) rather than simply warning about possible plan failures.

10º Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações 81

Acknowledgements
Part of the results of this paper were obtained through the research project entitled “Se-
mantic and Multi-Agent Technologies for Group Interaction”, sponsored by Samsung
Eletrônica da Amazônia Ltda. under the terms of Brazilian federal law No. 8.248/91.

References
Armentano, M. G. and Amandi, A. (2007). Plan recognition for interface agents. Artificial

Intelligence, 28(2):131–162.

Avrahami-Zilberbrand, D. and Kaminka, G. A. (2005). Fast and complete symbolic plan
recognition. In Kaelbling, L. P. and Saffiotti, A., editors, Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, pages 653–658. Professional Book
Center.

Carberry, S. (2001). Techniques for plan recognition. User Modeling and User-Adapted
Interaction, 11(1-2):31–48.

Fox, M. and Long, D. (2003). PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research, 20(1):61–124.

Geib, C. W. (2002). Problems with intent recognition for elder care. In Proceedings of
the AAAI-02 Workshop Automation as Caregiver, pages 13–17.

Geib, C. W. and Goldman, R. P. (2003). Recognizing plan/goal abandonment. In Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence, IJCAI’03,
pages 1515–1517, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Goldman, R. P., Geib, C. W., and Miller, C. A. (1999). A new model of plan recognition.
Artificial Intelligence, 64:53–79.

Hong, J. (2001). Goal recognition through goal graph analysis. Journal of Artificial
Intelligence Research, 15:1–30.

Kautz, H. A. and Allen, J. F. (1986). Generalized plan recognition. In Kehler, T., editor,
Proceedings of the Conference of the American Association of Artificial Intelligence
(AAAI-86), pages 32–37. Morgan Kaufmann.

Masato, D. (2012). Incremental Activity and Plan Recognition for Human Teams. PhD
thesis, University of Aberdeen.

Mausam and Weld, D. S. (2008). Planning with durative actions in stochastic domains.
Journal of Artificial Intelligence Research, 31(1):33–82.

Panisson, A. R., Freitas, A., Schmidt, D., Hilgert, L., Meneguzzi, F., Vieira, R., and Bor-
dini, R. H. (2015). Arguing About Task Reallocation Using Ontological Information in
Multi-Agent Systems. In 12th International Workshop on Argumentation in Multiagent
Systems.

Pynadath, D. V. and Wellman, M. P. (1995). Accounting for context in plan recognition,
with application to traffic monitoring. In Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence, UAI’95, pages 472–481, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Sukthankar, G., Goldman, R. P., Geib, C., Pynadath, D. V., and Bui, H. H., editors (2014).
Plan, Activity, and Intent Recognition: Theory and Practice. Elsevier.

