
LSTM-Based Goal Recognition in Latent Space
Leonardo Amado∗, João Paulo Aires∗, Ramon Fraga Pereira∗,

Maurı́cio C. Magnaguagno∗, Roger Granada∗ and Felipe Meneguzzi†
Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brazil
Postgraduate Programme in Computer Science, School of Technology
∗{leonardo.amado, joao.aires.001, ramon.pereira,

mauricio.magnaguagno, roger.granada}@acad.pucrs.br
†felipe.meneguzzi@pucrs.br

Abstract
Approaches to goal recognition have progressively
relaxed the requirements about the amount of do-
main knowledge and available observations, yield-
ing accurate and efficient algorithms capable of rec-
ognizing goals. However, to recognize goals in raw
data, recent approaches require either human engi-
neered domain knowledge, or samples of behavior
that account for almost all actions being observed
to infer possible goals. This is clearly too strong
a requirement for real-world applications of goal
recognition, and we develop an approach that lever-
ages advances in recurrent neural networks to per-
form goal recognition as a classification task, using
encoded plan traces for training. We empirically
evaluate our approach against the state-of-the-art
in goal recognition with image-based domains, and
discuss under which conditions our approach is su-
perior to previous ones.

1 Introduction
Goal recognition is the task of identifying the intended goal
of an agent under observation by analyzing the agent behav-
ior in an environment. Initial approaches on goal recognition
were based on planning theories, which require a substan-
tial amount of domain knowledge [Kautz and Allen, 1986].
Subsequent approaches have gradually relaxed such require-
ments using expressive planning and plan-library-based for-
malisms [Avrahami-Zilberbrand and Kaminka, 2005; Geib
and Steedman, 2007; Meneguzzi and Oh, 2010; Fagundes et
al., 2014] as well as achieving different levels of accuracy
and amount of information available in observations required
to recognize goals [Martı́n et al., 2015; Sohrabi et al., 2016;
Pereira and Meneguzzi, 2016; Pereira et al., 2017]. Re-
cent work on goal recognition in latent space [Amado et al.,
2018] overcomes this limitation by building planning domain
knowledge from raw data and using such domain knowl-
edge on traditional goal recognition techniques [Pereira et
al., 2017] to infer goals from image data. However, to build
this domain knowledge, their approach requires a substantial
amount of training data to create a complete PDDL domain.
In this paper, we try to mitigate this problem by applying a
recurrent neural network to solve the task of goal recognition

directly rather than to use the training data to generate do-
main knowledge. Our main goal is to reduce the amount of
training data necessary to correctly infer the intended goal of
an agent by leveraging a Long short-term memory (LSTM)
network. Long short-term networks [Hochreiter and Schmid-
huber, 1997] are capable of solving classification problems
by receiving streams of data and returning a class based on
the entirety of the data received. These streams of data can
be used to model the actions of an agent under observation in
goal recognition problems, where the class to be recognized
by the LSTM network is the agent’s goal.

Our main contributions are twofold. First, we develop
an end-to-end machine learning technique for goal recogni-
tion [Sukthankar et al., 2014, Ch. 1] based on training an
LSTM network in Section 2.3. Second, we empirically com-
pare the resulting approach with traditional goal recognition
approaches [Ramı́rez and Geffner, 2009; Pereira et al., 2017]
in Section 4, discuss how our approach relates to the cur-
rent state of the art in Section 5, and in Section 6, discuss
the trade-offs between using machine learning exclusively or
combining traditional techniques with machine learning.

2 Background
2.1 Goal Recognition
Goal recognition is the task of recognizing the intended goal
that an agent (software or human) aims to achieve from ob-
servations of its acting in an environment [Sukthankar et al.,
2014]. Observations can be either a sequence of actions per-
formed by the agent or the consequences of such actions,
more specifically, properties as logical facts (e.g., at home,
resting). Furthermore, observations can be either seen as a
full sequence of actions or a partial subsequence of actions
performed by an agent in an environment. Plan recognition
is a related task to goal recognition, however, the objective
of this task is recognizing the plan (i.e., sequence of actions)
that an observed agent is executing to achieve a particular
goal [Sukthankar et al., 2014]. Goal and plan recognition
in real-world data assume an underlying processing step that
translates raw sensor data into some kind of symbolic repre-
sentation [Sukthankar et al., 2014], as well as a model of the
observed agent’s behavior generation mechanism.

We use planning domain theories to formalize agents’
behavior and the environment description, following the

STRIPS formalism proposed by Fikes and Nilsson [1971].
A domain model is a tuple D = 〈R,O〉, where: R is a set
of predicates with typed variables. Predicates can be associ-
ated to objects in a concrete problem (i.e., grounded) repre-
senting logical values. Grounded predicates represent logical
values according to some interpretation as facts, which are
divided into two types: positive and negated facts, as well
as constants for truth (>) and falsehood (⊥). The set F of
positive facts induces the state-space of a planning problem,
which consists of the power set P(F) of such facts, and the
representation of individual states S ∈ P(F). O is a set of
operators op = 〈pre(op), eff (op)〉, where eff (op) can be di-
vided into positive effects eff +(op) (add list) and negative ef-
fects eff −(op) (delete list). An operator op with all variables
bound is called an action, and the collection of all actions
instantiated for a specific problem induces a state transition
function γ(S, a) 7→ P(F) that generates a new state from
the application of an action to the current state. An instan-
tiated action a from an operator op is applicable to a state
S iff S |= pre(a) and results in a new state S′ such that
S′ ← (S ∪ eff +(a))/eff −(a).

A planning problem within D and a set of typed objects Z
is defined as P = 〈F ,A, I, G〉, where: F is a set of facts
(instantiated predicates from R and Z); A is a set of instan-
tiated actions from O and Z; I is the initial state (I ⊆ F);
and G is a partially specified goal state, which represents a
desired state to be achieved. A plan π for a planning problem
P is a sequence of actions 〈a1, a2, ..., an〉 that modifies the
initial state I into a state S |= G in which the goal state G
holds by the successive execution of actions in a plan π. Most
automated planners use the Planning Domain Definition Lan-
guage (PDDL) as a standardized domain and problem repre-
sentation medium [Fox and Long, 2003], which encodes the
formalism described thus far.

We follow the definition from Ramı́rez and Geffner [2009;
2010] to formalize the problem of goal recognition problem
as planning. A goal recognition problem as planning is a tu-
ple PGR = 〈D,F , I,G, O〉, where D is a planning domain;
F is the set of facts; I ⊆ F is an initial state; G is the set of
possible goals, which include a correct hidden goal G∗ (i.e.,
G∗ ∈ G); andO = 〈o1, o2, ..., on〉 is an observation sequence
of executed actions, with each observation oi ∈ A, and the
corresponding action being part of a valid plan π that sequen-
tially transforms I into G∗. The solution for a goal recogni-
tion problem is the correct hidden goal G∗ ∈ G that the ob-
servation sequenceO of a plan execution achieves. An obser-
vation sequence O contains actions that represent an optimal
or sub-optimal plan that achieves a correct hidden goal, and
this observation sequence can be full or partial. A full obser-
vation sequence represents the whole plan that achieves the
hidden goal, i.e., 100% of the actions having been observed.
A partial observation sequence represents a subsequence of
the plan for the hidden goal, such that a certain percentage
of the actions actually executed to achieve G∗ could not be
executed.

2.2 Planning in Latent Space
Most planning algorithms are based on the factored transition
function γ(S, a) that represents states as discrete facts. This

transition function is usually encoded manually by a domain
expert, and virtually all existing goal and plan recognition ap-
proaches require varying degrees of domain knowledge in or-
der to recognize from observations. Automatically generating
of such domain knowledge involves at least two processes:
(1) converting real-world data into a factored representation
(i.e., the predicates in R); and (2) generating a transition
function (i.e., the set of operators O) from traces of the fac-
tored representation. Although a few approaches have tack-
led the challenge of applying learning to models of transition
functions [Jiménez et al., 2012], almost no approaches have
addressed the problem of generating domain models from
real world data. Recently, Asai and Fukunaga [2017] devel-
oped an approach to planning that generates domain models
from images of the visualization of the state of simple games
and problems, such as the sliding blocks puzzle or towers of
Hanoi. This approach uses an autoencoder [Vincent et al.,
2008] neural network to automatically generate two functions
with regard to an input image X and a latent representation
L: an encoder φ : X 7→ L and a decoder ψ : L 7→ X .
In this specific case, the input is a d-dimensional image Rd

and the output is an n×m matrix Rn×m representing n cat-
egorical variables each of which with m categories. When
m is two, the output of this auto-encoder corresponds to bi-
nary variables that can be interpreted as propositional logic
symbols comprising the F component of a planning domain
(without the intermediary step of the generating the set R of
predicates).

The resulting representation in latent space is amenable
to automatically inducing a transition function γ from pairs
of states under the assumption that state transitions corre-
spond exactly to pairs of consecutive images in the observed
traces. Under this assumption, they generate a large number
of propositional actions representing changes between these
images as add and delete effects of STRIPS-style actions.
The resulting domain representation encodes in latent-space
the propositional features from the images. LatPlanα is a
heuristic-based forward-search planner [Asai and Fukunaga,
2017] that uses this representation to plan solutions for prob-
lems derived from images of the initial and target state us-
ing the encoded domains. Preliminary experimentation with
LatPlanα [Asai and Fukunaga, 2017] shows that heuristics
from the planning literature [Geffner and Bonet, 2013, Chap-
ter 3] are still applicable, however, given the propositional
nature of the encoding, they are not so informative. Such
lack of informativeness provides a challenge to the applica-
tion of goal and plan recognition approaches in latent-space.
As we see in Section 2.3, in order to successfully employ ef-
ficient goal recognition approaches, we need not only to learn
a consistent latent representation of states, but also to use the
propositional transition function induced from state pairs to
generate STRIPS-style operators.

2.3 Goal Recognition in Latent Space
Goal recognition in Latent Space is a technique to apply clas-
sical goal recognition algorithms in raw data (such as images)
by converting it into a latent representation [Amado et al.,
2018]. In Figure 1, we provide an example of the goal recog-
nition problem in image domains. We want to infer what

Figure 1: Image goal recognition problem.

is the correct image configuration that the agent is trying to
achieve from the set of candidate goals using only observa-
tions consisting of intermediate image configurations. As we
can see, inferring the correct goal in such task is not trivial, as
the small number of observations provide little information.

To recognize goals in image based domains, Amado et
al. [2018] proposed four steps. First, we must develop an au-
toencoder capable of creating a latent representation to a state
of such image domain. Second, since classical goal recogni-
tion approaches require a PDDL domain, we need a technique
capable of extracting a PDDL domain from the latent rep-
resentation of the transition of the domain. Third, we must
convert to a latent representation a set of images represent-
ing, the initial state I, the set of facts F and a set of possible
goals G, where the hidden goal G∗ is included. Finally, we
can apply goal recognition techniques using the computed tu-
ple 〈D,F , I,G, O〉

The encoded representation can be achieved by using the
an autoencoder similar to the one described by Asai and
Fukunaga [2017] with the Gumbel softmax [Gumbel, 1954]
activation function. Each domain requires one autoencoder
capable to converting an image state of the domain to a latent
representation. We preprocessed these images by applying a
grayscale filter and then binarizing the resulting image. With
a trained autoencoder for each domain it is possible to output
a PDDL domain using the Action Learner develop by Amado
et al. [2018]. This PDDL domain will have a compressed
number of actions to improve the speed of the goal recogni-
tion process.

Following Section 2.1, we represent a goal recognition
problem by the tuple PGR = 〈D,F , I,G, O〉. We extract
the domain D using the Action Leaner, and the facts F rep-
resented by the latent space representation. We compute the
initial state I, a set of candidate goals G, and finally a set of
observations O. To compute I and the set of goals G, we use
the image representations of these states and convert them to
latent representation using the trained autoencoder. To de-
rive the observations O, we take pairs of images representing
of the environment. These images are encoded to the latent
representation, and then by using the PDDL domain we ex-

Figure 2: Image goal recognition process.

tracted, we compute which action from the PDDL domain
was responsible for such state transition. After building a goal
recognition problem, we can now apply off-the-shelf goal
recognition techniques, such as [Ramı́rez and Geffner, 2009;
Ramı́rez and Geffner, 2010; Sohrabi et al., 2016; Pereira et
al., 2017]. The output of such techniques is the goal with
highest probability of being the correct one, in the latent space
representation. We then decode the inferred goal, obtaining
its image representation using the decoder. This process is
illustrated in Figure 2.

2.4 Long Short-Term Memory Networks
A Recurrent Neural Network (RNN) is a network that at-
tempts to model a sequence of dependent events occurring
through time such as financial time series [Akita et al., 2016],
language modeling [Sundermeyer et al., 2015] and so on. The
recurrence is performed by feeding the input layer of the net-
work at time t + 1 with the output of the network layer at
time t, keeping a “memory” of the past events. Unfortunately,
RNNs suffer with well-known vanishing gradient problem
[Bengio et al., 1994], i.e., the gradients that are backpropa-
gated thought the network during the training phase tend to
decay or grow exponentially. Therefore, as dependencies in
RNNs get longer, the gradient calculation becomes unstable,
limiting the network to learn long-range dependencies.

In order to get rid of the vanishing gradient problem,
Hochreiter and Schmidhuber [1997] propose an RNN archi-
tecture called Long Short-Term Memory (LSTM) network
that modifies the original recurrent cell such that vanishing
and exploding gradients are avoided, whereas the training al-
gorithm is left unchanged. An LSTM cell contains mainly
four components called cell state, forget gate, input gate and
output gate. The cell state (C) is responsible for passing the
information through the cell to the next LSTM cell, while be-
ing changed by the gates. The forget gate decides what infor-
mation should be forget from the previous cell state. This gate
contains a sigmoid (σ) layer that outputs a number between
0 and 1, where 1 means “keep all information” and 0 means
“get rid of this information”. Input gate decides what infor-
mation should be stored in the cell state by applying a sigmoid

tanh

tanh

Ct1 Ct

ht1 ht

Xt ht

forget
gate

input
gate

output
gate

Figure 3: Internal structure of the Long-Short Term Memory cell.

layer to decide what information to keep and a hyperbolic
tangent (tanh) layer to select new candidates to the cell state,
performing an update to the cell state. Finally, the output
gate decides what information should be propagated forward
by performing a pointwise multiplication of a sigmoid layer,
which decides what part of the input should be forwarded, and
a the cell state filtered by a tanh operation. Figure 3 illustrates
the LSTM cell with its respective gates, where yellow boxes
represent layers, elements in green represent pointwise oper-
ations (⊗ pointwise multiplication, ⊕ pointwise addition and
tanh pointwise hyperbolic tangent function), merging arrows
represent the concatenation of elements and forking arrows
represent the copy of the content to multiple points.

Therefore, an LSTM performs a classification problem by
receiving a streamline of ordered data as input and returning
a class based on the data sequence received. In this work,
we use plan traces as input sequences and their correspond-
ing goals as training class when training the network. Hence,
the network learns the agent’s goal based on the sequence of
actions performed by the agent.

3 Goal Recognition in Latent Space using
LSTM

Current approaches to recognize goals in latent space require
enough data to build a complete PDDL domain [Amado et
al., 2018]. To avoid the need of such high amount of do-
main knowledge, we propose the usage of a machine learning
model capable of recognizing goals using only plan traces as
training data.

Our LSTM consists of three main layers. First, we use an
embedding layer to convert our input sequence into a dense
representation with a dimension of 1000 that will feed the
LSTM units. Second, we use an LSTM layer containing 512
units. Finally, a fully connected layer receives the output from
LSTM and generates the goal representation with 36 output
neurons. We use sigmoid activation on the neurons from the
output layer and a binary cross entropy loss using RMSprop
as optimizer. Figure 4 illustrates our LSTM architecture.

In order to create a model to recognize goals, we train an
LSTM that receives a sequence of encoded states and predicts
an encoded goal. To perform a fair comparison to the state-
of-the-art, we use as input encoded states generated by the

Embedding
Layer
(1000)

LSTM (512)

Fully-Connected
Layer
(36)

Sequence of
states

Goal
Representation

Figure 4: LSTM Architecture

encoder module from the autoencoder created by Asai and
Fukunaga [2017]. Thus, we convert each image-state into a
latent representation (a 6x6 binary matrix). Figure 5 illus-
trates the process of training and testing our LSTM model,
we highlight three main steps of such process. First, given
a set of image-states representing a sequence of states and
the goal of a certain plan, we use the encoder to generate the
latent representation for each image. Second, using the rep-
resentations, we train the LSTM to predict the goal given the
states. The output is a representation of this goal. Finally,
we use the decoder from Asai and Fukunaga autoencoder to
convert the produced representation into an image.

To train the LSTM network, we require data extracted from
plans for each domain. We use plan traces generated by
Amado et al. [2018], observing the states that were reached
in each plan. Each trace generated a list of states, and then
we included the goal of each trace as a class to the LSTM. To
improve accuracy in low observability scenarios, we included
partially observable traces (which means some states were re-
moved from the plan trace), including 10%, 30%, 50%, 70%
of observability. During the training phase, we use early stop-
ping to avoid overfitting and set a limit of 10,000 epochs.
Early stopping monitors validation loss ensuring training will
stop when loss stops decreasing.

We manipulate LSTM inputs by converting the latent rep-

Dataset

Sequence of states

Encoder

Encoded Dataset

LSTM

Decoder

Latent
Goal

Trained Model

Encoded
trace

Figure 5: Goal recognition using LSTMs

resentations into a specific encoding. In our specific case, we
turn each state into an integer number, thus, we differentiate
them simplifying the input. An entry example of such model
is: 22, 23, 33, 48, 12, where each number is a specific state
from the state-space in its domain and the sequence is an en-
tire plan. The output layer is 36 binary neurons, which we
use to rebuild the latent representation by reshaping it into a
6x6 matrix.

4 Experiments
4.1 Datasets
In order to evaluate our LSTM approach, we generated a
number of image-based datasets based on existing goal recog-
nition problems [Pereira and Meneguzzi, 2017; Asai and
Fukunaga, 2017; Amado et al., 2018]. We have two main
experimental objectives: first, we want to compare the perfor-
mance of our LSTM approach with the existing approaches to
goal recognition in latent space, using problems were the goal
of each problem is contained in the dataset; second, we want
to evaluate the performance of our LSTM approach when
dealing with problems were the goal is not contained as a
class in our dataset. Our evaluation dataset thus are two dis-
tinct datasets. The first, a dataset containing the exact prob-
lems used in [Amado et al., 2018] to evaluate their latent goal
recognition approach. The second, a dataset containing new
goal recognition problems, with distinct goals where these
goals do not appear as a class in the training dataset for the
LSTM. In order to generate such traces, we use a standard
PDDL planner [Helmert, 2006] to search for a plan for a set
of randomly generated goals. From the resulting traces, we
can generate the observations at various levels of observabil-
ity by omitting the states resulting from a percentage of the
actions generated by the planner.

Using this method to produce experimental datasets, we
generated PDDL domains and images for six different
datasets:

• three variations of the 8-Puzzle, whose goal to order a
set of pieces when you can only move the blank space:

– the MNIST 8-puzzle uses the handwritten digits
from the MNIST dataset as the pieces of the puzzle,
with the number 0 representing the blank space, as
illustrated in Figure 6a—every image of the dataset
uses the same handwritten digit for every repeating
number;

– the Mandrill 8-puzzle uses the image of a Mandrill,
shown in Figure 6b—we use the mandrill’s right
eye as the blank space;

– the Spider 8-puzzle uses the image of a Spider,
shown in Figure 6c—like the mandrill data set, we
use the spider’s right eye as the blank space;

• two variations of the Lights-out puzzle game [Fleischer
and Yu, 2013], which consists of a 4 by 4 grid of lights
that can be turned on and off, and which starts with a ran-
dom number of lights initially on—toggling any of the
lights also toggles every adjacent light—the objective is
to turn every light off;

(a) MNIST (b) Mandrill (c) Spider

(d) LO Digital (e) LO Twisted (f) Hanoi

Figure 6: Sample state for each domain.

– lights-out digital (LO Digital) is a standard lights
out representation using crosses to represent when
a light is on, illustrated in Figure 6d;

– lights-out twisted (LO Twisted) is a variation of
the digital version of lights out such that the image
representation undergoes a distortion filter, twist-
ing the exact position of each light, as seen in Fig-
ure 6e; and

• the Tower of Hanoi puzzle, which consists of stacked
disks of different sizes and stakes—the objective is to
move every disk to a different stack, and we we use a
version of the puzzle with three disks and four stakes
illustrated in Figure 6f.

Table 1 describes our dataset specifications, such as domains,
number of traces for each domain, and training time. As we
can see, most domains have more than 1000 traces with train-
ing times smaller than 5 minutes. As outliers, LO digital and
twisted have small number of traces, it occurs because their
plans are relatively smaller when compared to the other do-
mains, which limits the variety of traces.

Table 1: Dataset specifications

Domain # of Traces Training Time (seconds)

Hanoi 1552 22.57
LO digital 230 294.58
LO twisted 224 64.33
Mandrill 2520 14.87
MNIST 1427 211.42
Spider 2216 333.25

4.2 Goal Recognition
To compare our approach with the existing approaches of goal
recognition for latent space, we use the exact same dataset
used in [Amado et al., 2018]. This dataset consists of 6 dis-
tinct problems for each domain, where each problem has at
least 4 distinct candidate goals. The candidate goals are not
necessary for the LSTM. From each of these problems (i.e.,
the initial states and candidate goals), we generate 5 differ-
ent conditions for the goal recognition algorithm, by altering
the level of observability available to the algorithm. We set

five different percentages of observability: 100%, 70%, 50%,
30% and 10%.

The observations from the Dataset described in Section 4.1
are pruned so that only the specified fraction of the original
observations are left. We use two goal recognition approaches
to compare with our LSTM approach (LSTM in Table 2): the
landmark-based heuristics hgc (Goal Completion Heuristic)
developed by Pereira, Oren, and Meneguzzi (POM in in Ta-
ble 2) in [Pereira et al., 2017], and the most accurate approach
developed by Ramı́rez and Geffner [2009] (RG in in Table 2).
These two approaches are the current state-of-the-art in goal
and plan recognition in terms of time and accuracy, respec-
tively.

Table 2 summarizes goal recognition performance of each
approach using the latent representation and learned PDDL
encoding provided in [Amado et al., 2018], for all domains in
the dataset and three different goal recognition approaches.
In the LSTM approach, the learned PDDL is not needed to
perform goal recognition, only the encoded traces. In this
comparison, every hidden goal was included in the LSTM
training set at least once. We guarantee that the traces used
in this comparison were not included in the training set. Each
row of this table shows averages for the number of candidate
goals |G|; the percentage of the plan that is actually observed
(%) Obs; the average number of observations per problem
|O|; and, for each goal recognition approach, the time in sec-
onds to recognize the goal given the observations; the Accu-
racy % with which the approaches correctly infer the hidden
goal; and Spread in G, representing the average number of
returned goals. For the LSTM is always one, as it always
returns one goal. As we can see, the LSTM achieved overall
good accuracy across all domains and observability scenarios.
The execution time was between 0.3 and 0.5 seconds. While
the RG approach has a good accuracy, it does so with a large
spread and long execution times. This trade-off is highlighted
in the most complex domains, such as Lights out digital and
lights out twisted. The POM approach also struggled with
high spread in some domains, such as the hanoi domain, but
was much faster than RG in all scenarios. Overall the LSTM
achieved better results, considering it returns always one goal
and the other approaches struggled with high spread. As we
can see, for recognizing goals that are contained in the train-
ing set, the LSTM is a promising approach that does well in
both speed and accuracy.

For comparison, Table 3 shows the results of solving these
problems with hand made PDDL domains. Since there is no
learning inaccuracies in the PDDL of such domains, the re-
sults are often superior than the learned models. However,
in the lights out model, we can see that the approaches also
struggle with a high amount of spread.

In Table 4 we display the results when dealing with goals
that are not contained in the the training set. The test set con-
sists of 6 distinct problems with distinct goals, where each
problem generates 5 traces using different observability (10,
30, 50, 70, 100%). The LSTM was unable to recognize any
of the goals that are not contained in the dataset. We present
the reconstruction accuracy, that estimates how close was the
LSTM to reconstruct the correct goal. There is no direct com-
parison to other goal recognition approaches, as there is a

training data is used in the other approaches. As we can see,
our approach needs the goal to be contained in the training
set, as the LSTM network is unable to reconstruct a goal that
it has not seen. In such scenarios enumerating every pos-
sible goal is not recommended, as the number of possible
states (and so goals) in a 8-Puzzle problem is 362,880. Thus
our approach by encoding classes for classification is very
promising, as long as the training set contains many goals
(and thus classes), as it removes the burden of enumerating
every classes.

5 Related Work
Min et al. [2014] propose a deep LSTM network approach
capable of recognizing goals of a player in an educational
game scenario. The dataset used for training the deep LSTM
is a player behavior corpus consisting of distinctive player
actions. The challenge comes from recognizing goals when
handling uncertainty from noise input and non-optimal player
behavior. The LSTM is able to do standard metric-based goal
recognition and online goal recognition, as information is fed.

Although the work is very similar to ours, the main dif-
ference is that the entirety of the goals are already known in
the work proposed by Min et al., while in our work, we try
to reconstruct the goal from the observation traces. This is a
significant difference, because our approach tries to recognize
goals without any domain knowledge from a domain expert,
making our approach completely domain independent. The
results will vary depending how many times the goal appears
in the training data.

Asai and Fukunaga [2017] develop a planning architecture
capable of planning using only pairs of images (represent-
ing, respectively, the initial and goal states) from the domain
by converting the images into a latent space representation.
Their architecture consists of a variational autoencoder (VAE)
followed by an off-the-shelf planning algorithm. The archi-
tecture convert images into discrete latent vectors using the
VAE, and uses the information in such latent vectors to plan
over the images and find a sequence of actions that transforms
the state into one matching the goal image.

Amado et al. [2018] develop an approach to recognize
goals in image domains, by converting the images to a latent
representation, deriving a PDDL from domain knowledge
converted to a latent representation and then applying off-the-
shelf goal recognition algorithms. Our work extends this ap-
proach by proposing an LSTM as a goal recognizer. The dif-
ference is a trade-off between domain knowledge, since the
LSTM does not require a PDDL domain, and training dataset
using plan traces that is necessary to train the LSTM network.

Ramı́rez and Geffner [2009] propose planning approaches
for goal and plan recognition, and instead of using plan-
libraries, they model the problem as a planning domain the-
ory with respect to a known set of candidate goals. This
work uses a modified heuristic, an optimal and modified sub-
optimal planner to determine the distance to every goal in
a set of candidate goals given a sequence of observations.
Recently, Pereira et al. [2017] develop landmark-based ap-
proaches for goal recognition, more specifically, they develop
a two fast and accurate heuristics for goal recognition. Their

Table 2: Experimental results on Goal Recognition in Latent Space.

POM (hgc) LSTM RG

Domain |G| (%) Obs |O| Time (s))
θ (0 / 10)

Accuracy %
θ (0 / 10)

Spread in G
θ (0 / 10) Time (s) Accuracy % Spread in G Time (s) Accuracy % Spread in G

10 1.2 0.591 / 0.603 33.3% / 83.3% 1.6 / 4.0 0.346 16.6% 1.0 21.25 100.0% 6.0
30 3.0 0.612 / 0.625 33.3% / 83.3% 1.4 / 2.8 0.335 100.9% 1.0 22.26 100.0% 4.8

MNIST 6.0 50 4.0 0.673 / 0.677 60.0% / 100.0% 2.2 / 3.0 0.326 100.0% 1.0 22.48 100.0% 4.8
70 5.8 0.698 / 0.703 100.0% / 100.0% 2.4 / 3.0 0.394 100.0% 1.0 23.53 100.0% 3.2
100 7.8 0.724 / 0.730 100.0% / 100.0% 2.4 / 3.0 0.357 100.0% 1.0 26.34 100.0% 3.4
10 1.8 0.013 / 0.014 16.6% / 83.3% 1.0 / 3.8 0.335 50% 1.0 1.02 83.3% 5.6
30 4.8 0.015 / 0.017 16.6% / 100.0% 1.0 / 4.8 0.366 100.0% 1.0 1.38 83.3% 3.8

Mandrill 6.0 50 6.0 0.018 / 0.018 33.3% / 83.3% 1.1 / 4.8 0.389 100.0% 1.0 1.44 83.3% 4.1
70 8.1 0.020 / 0.021 50.0% / 83.3% 1.3 / 4.3 0.353 100.0% 1.0 1.68 66.6% 1.8
100 11.3 0.022 / 0.023 66.6% / 100.0% 1.8 / 5.16 0.347 100.0% 1.0 1.71 66.6% 1.8
10 1.5 0.166 / 0.178 33.3% / 66.6% 2.3 / 4.8 0.375 83.3% 1.0 1.35 83.3% 4.1
30 4.0 0.181 / 0.190 66.6% / 66.6% 4.1 / 5.1 0.423 83.3% 1.0 1.57 83.3% 3.0

Spider 6.0 50 5.6 0.193 / 0.199 50.0% / 83.3% 3.5 / 5.5 0.431 100.0% 1.0 1.66 83.3% 2.8
70 7.5 0.201 / 0.205 83.3% / 83.3% 4.6 / 5.5 0.384 100.0% 1.0 1.79 66.6% 2.3
100 10.5 0.208 / 0.217 100.0% / 100.0% 5.5 / 6.0 0.368 100.0% 1.0 2.04 66.6% 1.1
10 1.0 0.831 / 0.902 33.3% / 33.3% 1.5 / 3.0 0.315 83.3% 1.0 42.52 100.0% 6.0
30 1.6 0.884 / 1.09 33.3% / 66.6% 1.5 / 4.3 0.317 100.0% 1.0 43.07 100.0% 5.5

LO Digital 6.0 50 2.5 0.915 / 1.13 33.3% / 83.3% 1.5 / 4.5 0.336 100.0% 1.0 43.41 83.3% 5.1
70 3.6 0.970 / 1.19 83.3% / 100.0% 3.6 / 4.5 0.371 83.3% 1.0 43.78 100.0% 4.8
100 4.3 1.12 / 1.24 100.0% / 100.0% 2.6 / 4.3 0.330 83.3% 1.0 43.91 100.0% 4.8
10 1.0 1.16 / 1.21 16.6% / 16.6% 1.0 / 3.0 0.376 66.6% 1.0 121.97 100.0% 5.8
30 1.6 1.25 / 1.39 16.6% / 50.0% 1.0 / 3.8 0.320 100.0% 1.0 123.92 100.0% 5.0

LO Twisted 6.0 50 2.1 1.33 / 1.46 16.6% / 50.0% 1.0 / 4.5 0.339 100.0% 1.0 124.42 100.0% 5.6
70 3.3 1.48 / 1.50 16.6% / 83.3% 1.0 / 3.3 0.312 100.0% 1.0 127.22 100.0% 5.5
100 4.3 1.57 / 1.62 100.0% / 100.0% 2.3 / 5.0 0.327 100.0% 1.0 129.99 100.0% 5.5
10 1.0 0.304 / 0.318 33.3% / 66.6% 1.0 / 2.3 0.334 66.6% 1.0 6.08 100.0% 4.0
30 3.0 0.316 / 0.320 100.0% / 100.0% 4.0 / 4.0 0.365 100.0% 1.0 6.21 100.0% 4.0

Hanoi 4.0 50 4.3 0.322 / 0.337 100.0% / 100.0% 4.0 / 4.0 0.371 100.0% 1.0 7.01 66.6% 3.3
70 6.0 0.345 / 0.354 100.0% / 100.0% 4.0 / 4.0 0.372 66.6% 1.0 7.26 100.0% 4.0
100 8.3 0.354 / 0.362 100.0% / 100.0% 4.0 / 4.0 0.329 66.6% 1.0 8.19 100.0% 4.0

Table 3: Experimental results on Goal Recognition using handmade domains.

POM (hgc) RG

Domain |G| (%) Obs |O| Time (s))
θ (0 / 10)

Accuracy %
θ (0 / 10)

Spread in G
θ (0 / 10) Time (s) Accuracy % Spread in G

10 1.6 0.010 / 0.012 66.6% / 100.0% 1.6 / 2.3 0.075 33.3% 1.3
30 4.0 0.011 / 0.012 66.6% / 100.0% 1.0 / 1.3 0.080 100.0% 2.3

Hanoi 4.0 50 6.3 0.012 / 0.013 66.6% / 100.0% 1.0 / 1.6 0.085 100.0% 1.3
70 8.6 0.013 / 0.013 100.0% / 100.0% 1.3 / 1.3 0.091 100.0% 1.3

100 11.6 0.013 / 0.013 100.0% / 100.0% 1.6 / 2.0 0.098 100.0% 1.3
10 1.0 0.098 / 0.111 16.6% / 33.3% 1.0 / 2.6 0.179 100.0% 4.8
30 3.0 0.109 / 0.120 66.6% / 100.0% 1.1 / 2.3 0.188 100.0% 1.3

8-Puzzle 6.0 50 4.0 0.117 / 0.129 66.6% / 100.0% 1.0 / 2.0 0.191 100.0% 1.3
70 5.3 0.121 / 0.135 100.0% / 100.0% 1.0 / 1.8 0.210 100.0% 1.0

100 7.3 0.133 / 0.141 100.0% / 100.0% 1.0 / 1.1 0.246 83.3% 1.1
10 1.0 0.689 / 0.766 33.3% / 66.6% 1.3 / 3.8 5.76 100.0% 5.6
30 1.6 0.721 / 0.780 50.0% / 83.3% 1.6 / 4.5 5.79 100.0% 5.3

Light-Out 6.0 50 2.6 0.788 / 0.811 33.3% / 100.0% 2.6 / 5.3 5.82 100.0% 5.4
70 3.6 0.804 / 0.849 66.6% / 100.0% 3.8 / 5.0 5.90 100.0% 5.3

100 4.3 0.875 / 0.956 100.0% / 100.0% 4.6 / 6.0 5.93 100.0% 4.8

Table 4: LSTM results with unknown goals.

Domain Reconstruction # Problems Correct
Accuracy (%) Predictions

MNIST 48,6% 30 0%
Mandrill 53,6% 30 0%
Spider 58,4% 30 0%
LO-Digital 53% 30 0%
LO-Twisted 51,2% 30 0%

first approach, called Goal Completion Heuristic, computes
the ratio between the number of achieved landmarks and the
total number of landmarks for a given candidate goal. The
second approach, called Uniqueness Heuristic, uses the con-
cept of landmark uniqueness value, representing the infor-
mation value of the landmark for a particular candidate goal
when compared to landmarks for all candidate goals. Thus,
the heuristic estimative provided by this heuristic is the ra-
tio between the sum of the uniqueness value of the achieved
landmarks and the sum of the uniqueness value of all land-
marks of a candidate goal.

6 Conclusions and Discussion
We developed an approach for goal recognition in latent space
using an LSTM network, obviating the need for human en-
gineering to create a task for goal recognition. Other ap-
proaches require either human engineered domains [Pereira

et al., 2017], or an extensive amount of domain knowledge to
build a PDDL domain [Amado et al., 2018]. Empirical evalu-
ation on multiple datasets shows that while we can solve some
problems with the same or higher accuracy than hand-coded
problems, our LSTM approach does not easily generalize for
goals outside the training dataset. Nevertheless, our approach
provides a meaningful initial step towards goal recognition
without human domain engineering and minimal amount of
training data. In summary the advantages of using our LSTM
approach to recognize goals are: high accuracy and fast pre-
diction time when dealing with known goals; no false positive
predictions, given that it only predicts a single goal; no need
of a PDDL domain, which requires extensive domain knowl-
edge. However, our approach has the following disadvan-
tages: like most pure machine learning approaches, perfor-
mance is tied to the robustness of the training dataset; requires
training, which is unnecessary for classical goal recognition
approaches; very limited generalizability with small datasets.

As future work, we aim to develop a dataset to test the abil-
ity of the different goal recognition approaches in latent space
when dealing with noisy observations. In the LSTM case, a
noisy observation would be a state in the encoded trace that is
not relevant to achieving the desired goal (i.e., an unnecessary
step performed by the agent being observed). Since Amado et
al. [2018] compute every transition of the domain to generate
a complete PDDL domain, we would like to investigate ways
to use such information to improve the LSTM performance
when dealing with goals that are not contained in the training
set. Furthermore, we would like to study ways to improve

generalization in our approach. We envision using a percent-
age of the encoded transitions as a pre-training mechanism
for the network, forcing the network to reconstruct many of
the goals of the domain.

To improve the quality of the datasets generated for the
LSTM, we intend to use a top-k planner [Katz et al., 2018],
which provides the ability to return k distinct plans from a
particular planning problem, being useful to generate datasets
with both optimal and sub-optimal plans. This approach
could improve the accuracy of the LSTM network when deal-
ing with noisy and sub-optimal plans.

References
[Akita et al., 2016] Ryo Akita, Akira Yoshihara, Takashi

Matsubara, and Kuniaki Uehara. Deep learning for
stock prediction using numerical and textual informa-
tion. In Proceedings of the 2016 IEEE/ACIS 15th Interna-
tional Conference on Computer and Information Science,
ICIS’16, pages 1–6. IEEE, 2016.

[Amado et al., 2018] Leonardo Amado, Ramon F Pereira,
João P Aires, Mauricio Magnaguagno, Roger Granada,
and Felipe Meneguzzi. Goal recognition in latent space.
In Proceedings of the 2018 International Joint Conference
on Neural Networks, IJCNN’18. IEEE, 2018.

[Asai and Fukunaga, 2017] M Asai and A Fukunaga. Clas-
sical Planning in Deep Latent Space: From Unlabeled Im-
ages to PDDL (and back). In Workshop on Knowledge
Engineering for Planning and Scheduling, pages 27–35,
2017.

[Avrahami-Zilberbrand and Kaminka, 2005] D Avrahami-
Zilberbrand and G A Kaminka. Fast and complete
symbolic plan recognition. In Proceedings of the 19th
international joint conference on Artificial intelligence,
pages 653–658, San Francisco, CA, USA, 2005. Morgan
Kaufmann Publishers Inc.

[Bengio et al., 1994] Yoshua Bengio, Patrice Simard, and
Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neu-
ral Networks, 5(2):157–166, Mar 1994.

[Fagundes et al., 2014] Moser Fagundes, Felipe Meneguzzi,
Rafael H. Bordini, and Renata Vieira. Dealing with ambi-
guity in plan recognition under time constraints. In Pro-
ceedings of the Thirteenth International Conference on
Autonomous Agents and Multiagent Systems, pages 389–
396, 2014.

[Fikes and Nilsson, 1971] Richard Fikes and Nils Nilsson.
STRIPS: A New Approach to the Application of Theo-
rem Proving to Problem Solving. Artificial Intelligence,
2(3-4):189–208, 1971.

[Fleischer and Yu, 2013] Rudolf Fleischer and Jiajin Yu. A
Survey of the Game “Lights Out!”, pages 176–198.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[Fox and Long, 2003] M Fox and D Long. PDDL2. 1: An
extension to PDDL for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research, 2003.

[Geffner and Bonet, 2013] Hector Geffner and Blai Bonet.
A Concise Introduction to Models and Methods for Au-
tomated Planning, volume 7. A Concise Introduction to
Models and Methods for Automated Planning, 2013.

[Geib and Steedman, 2007] Christopher W Geib and Mark
Steedman. On natural language processing and plan recog-
nition. In Proceedings of the 20th IJCAI, pages 1612–
1617, 2007.

[Gumbel, 1954] Emil J Gumbel. Statistical theory of extreme
values and some practical applications: a series of lec-
tures. Applied mathematics series. U. S. Govt. Print. Of-
fice, 1954.

[Helmert, 2006] Malte Helmert. The fast downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, November 1997.

[Jiménez et al., 2012] Sergio Jiménez, Tomás de la Rosa,
Susana Fernández, Fernando Fernández, and Daniel Bor-
rajo. A review of machine learning for automated plan-
ning. Knowledge Engineering Review, 27(4):433–467,
2012.

[Katz et al., 2018] Michael Katz, Shirin Sohrabi, Octavian
Udrea, and Dominik Winterer. A novel iterative ap-
proach to top-k planning. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2018), 2018.

[Kautz and Allen, 1986] Henry A Kautz and James F Allen.
Generalized Plan Recognition. In AAAI, pages 32–37,
1986.

[Martı́n et al., 2015] Yolanda E Martı́n, Marı́a D R Moreno,
and David E Smith. A Fast Goal Recognition Technique
Based on Interaction Estimates. IJCAI, 2015.

[Meneguzzi and Oh, 2010] Felipe Meneguzzi and Jean Oh.
Proactive Assistant Agents: Papers from the AAAI Fall
Symposium. Technical report, Arlington, Virginia, 2010.

[Min et al., 2014] Wookhee Min, Eunyoung Ha, Jonathan P.
Rowe, Bradford W. Mott, and James C. Lester. Deep
learning-based goal recognition in open-ended digital
games. In AIIDE, 2014.

[Pereira and Meneguzzi, 2016] Ramon Fraga Pereira and
Felipe Meneguzzi. Landmark-based Plan Recognition.
In European Conference on Artificial Intelligence, pages
1706–1707, 2016.

[Pereira and Meneguzzi, 2017] Ramon Fraga Pereira and
Felipe Meneguzzi. Goal and plan recognition datasets
using classical planning domains. Technical report, July
2017.

[Pereira et al., 2017] Ramon Fraga Pereira, Nir Oren, and
Felipe Meneguzzi. Landmark-Based Heuristics for Goal
Recognition. In Proceedings of the 32st AAAI Conference
on Artificial Intelligence, 2017.

[Ramı́rez and Geffner, 2009] M Ramı́rez and H Geffner.
Plan recognition as planning. In International Joint Con-
ference on Artificial Intelligence, pages 1778–1783, 2009.

[Ramı́rez and Geffner, 2010] Miquel Ramı́rez and Hector
Geffner. Probabilistic Plan Recognition Using Off-the-
Shelf Classical Planners. In AAAI, pages 1121–1126,
2010.

[Sohrabi et al., 2016] S Sohrabi, A V Riabov, and O Udrea.
Plan Recognition as Planning Revisited. In International
Joint Conference on Artificial Intelligence, pages 3258–
3264, 2016.

[Sukthankar et al., 2014] Gita Sukthankar, Robert P Gold-
man, Christopher Geib, David V Pynadath, and Hung Hai
Bui. Plan, Activity, and Intent Recognition: Theory and
Practice. Elsevier, 2014.

[Sundermeyer et al., 2015] Martin Sundermeyer, Hermann
Ney, and Ralf Schlüter. From feedforward to recurrent
lstm neural networks for language modeling. IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
23(3):517–529, March 2015.

[Vincent et al., 2008] Pascal Vincent, Hugo Larochelle,
Yoshua Bengio, and Pierre-Antoine Manzagol. Extract-
ing and composing robust features with denoising autoen-
coders. In 25th International Confer- ence on Machine
Learning, pages 1096–1103, New York, New York, USA,
2008. ACM Press.

