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Abstract

Goal recognition is the task of inferring the intended goal
of an agent given a sequence of observations. Advances in
heuristics based on linear programming allows us to solve
goal recognition tasks by encoding the declarative knowledge
about such tasks resulting in two central contributions. First,
we develop an approach that guarantees we select the actual
hidden goal given the complete sequence of either optimal or
suboptimal observations. Second, we automatically estimate
the number of missing observations through a metric of un-
certainty, which improves accuracy under very low observ-
ability. Experiments and evaluation show that the resulting
approach is fast and dominates previous methods providing
lower spread and higher accuracy on average.

1 Introduction
Goal recognition as planning (Ramı́rez and Geffner 2009;
Ramı́rez and Geffner 2010) is the task of recognizing the
actual goal from a set of hypotheses given a sequence of
observations, an initial state, and a behavior model of the
agent under observation. Approaches for goal recognition as
planning have leveraged efficient planning technology and
heuristic information to develop increasingly accurate and
faster goal recognition approaches. Most approaches select
goals based on metrics that compare the cost of optimal
plans and the cost of plans constrained to comply or avoid
observations. These approaches differ in how they compute
or approximate these costs. While some approaches com-
pute these costs using a planner (Ramı́rez and Geffner 2009;
Ramı́rez and Geffner 2010), others approximate them using
sophisticated structures from heuristic functions (E-Martı́n,
R.-Moreno, and Smith 2015; Vered et al. 2018), or try to ex-
plicitly cope with missing and noisy observations by intro-
ducing weights in the action descriptions (Sohrabi, Riabov,
and Udrea 2016). By contrast, recent work (Pereira, Oren,
and Meneguzzi 2017) introduces recognition heuristics us-
ing information from the structure of the planning instances
in order to recognize the actual goal from a set of goal hy-
pothesis and observations. All of them try to balance speed
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and accuracy: the more precise the information used to de-
cide which goals should be selected, the higher the overall
time.

The main challenge in goal recognition tasks is to achieve
reasonable recognition time (i.e., a few seconds), high ac-
curacy and low spread. In this paper, we address these chal-
lenges by leveraging recent advances on heuristics computed
via linear programming (LP) (Pommerening et al. 2014).
LP-based heuristics constitute a unifying framework for a
variety of sources of information from planning tasks that
provide both precise information about the plan cost to a
goal, and fast computation time. This framework enables
us to encode knowledge about planning and goal recogni-
tion tasks and use off-the-shelf LP solvers to combine this
knowledge. This proves to be effective to build goal recog-
nition heuristics, disambiguating between goal hypotheses.

We use the framework of LP-based heuristics from Pom-
merening et al. (2014) to encode knowledge about planning
and goal recognition tasks and use off-the-shelf LP solvers
to combine this knowledge in an optimal way. While previ-
ous approaches need to balance accuracy, speed, and spread,
LP-based methods can satisfy constraints both about plans
and about complying with optimal and suboptimal observa-
tions. The resulting approaches guarantee selection of the
actual goal given the complete sequence of observations. In
practice, such approaches lead to fast recognition time, low
spread and high accuracy. Previous recognition approaches
used the same method to select goals regardless of whether
the number of available observation is low or high. We show
that this is an undesirable property of these approaches,
which leads to a higher spread and a lower accuracy. The
LPs allow us to automatically estimate the number of miss-
ing observations, which, in turn, yields an approach that im-
proves accuracy under very low observability scenarios. We
empirically show that our LP-based heuristics are very ef-
fective at goal recognition, overcoming existing approaches
in almost all domains in terms of accuracy while diminish-
ing the spread of recognized goals. Such approaches are also
substantially more effective for noisy settings, even with-
out an explicit model of the noisy observations. Finally, we
discuss how our approach can be further extended and how
our uncertainty metric can be used to improve previous ap-
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proaches.

2 Background
In this section, we review essential background on planning
terminology and goal recognition as planning. Finally, we
provide background on LP-based heuristics for planning,
and discuss the framework we used to build our heuristics
for goal recognition.

2.1 Planning
Planning is the problem of finding a sequence of actions
that achieves a goal from an initial state (Ghallab, Nau, and
Traverso 2004). A state is a finite set of facts that repre-
sent logical values according to some interpretation. Facts
can be either positive, or negated ground predicates. A pred-
icate is denoted by an n-ary predicate symbol p applied to a
sequence of zero or more terms (τ1, τ2, ..., τn). An opera-
tor is represented by a triple a = 〈name(a), pre(a), eff (a)〉
where name(a) represents the description or signature of a;
pre(a) describes the preconditions of a — a set of facts or
predicates that must exist in the current state for a to be exe-
cuted; eff (a) = eff (a)+ ∪ eff (a)− represents the effects of
a, with eff (a)+ an add-list of positive facts or predicates, and
eff (a)− a delete-list of negative facts or predicates. When we
instantiate an operator over its free variables, we call the re-
sulting ground operator an action. A planning instance is
represented by a triple Π = 〈Ξ, I, G〉, in which Ξ = 〈Σ,A〉
is a planning domain definition; Σ consists of a finite set of
facts and A a finite set of actions; I ⊆ Σ is the initial state;
and G ⊆ Σ is the goal state. A plan is a sequence of actions
π = 〈a1, a2, ..., an〉 that modifies the initial state I into one
in which the goal state G holds by the successive execution
of actions in a plan π. While actions have an associated cost,
as in classical planning, we assume that this cost is 1 for all
actions. A plan π is considered optimal if its cost, and thus
length, is minimal.

2.2 Goal Recognition as Planning
Goal recognition is the task of recognizing agents’ goals
by observing their interactions in a particular environ-
ment (Sukthankar et al. 2014). In goal recognition, such ob-
served interactions are defined as available evidence that can
be used to recognize goals. As proposed by Ramı́rez and
Geffner (2009; 2010), we formally define a goal recogni-
tion problem over a planning domain definition as follows.
Definition 1 (Goal Recognition Problem). A goal recog-
nition problem is a tuple TGR = 〈Ξ, I,G, O〉, in which
Ξ = 〈Σ,A〉 is a planning domain definition; I is the initial
state; G is the set of possible goals, which includes the actual
hidden goal G∗ (i.e., G∗ ∈ G); and O = 〈o1, o2, . . . , on〉 is
an observation sequence of executed actions, with each ob-
servation oi ∈ A.

The ideal solution for a goal recognition problem is find-
ing the single actual hidden goalG∗ ∈ G that the observation
sequence O of a plan execution achieves. Most approaches
to goal and plan recognition return either a probability distri-
bution over the goals (Ramı́rez and Geffner 2009; Ramı́rez
and Geffner 2010; Sohrabi, Riabov, and Udrea 2016), or a

score associated to the set of possible goals (Pereira, Oren,
and Meneguzzi 2017). In Section 3, we explain how we in-
fer the hidden goal from the observation sequence using LP.
Note that an observation sequence can be either full or par-
tial — in a full observation sequence we observe all actions
of an agent’s plan; in a partial observation sequence, only a
sub-sequence of actions are observed.

2.3 Operator-Counting Framework
Recent work on linear programming (LP) based heuristics
has generated a number of informative and efficient heuris-
tics for optimal-cost planning (van den Briel et al. 2007;
Pommerening et al. 2014; Bonet 2013a). These heuristics
rely on constraints from different sources of information
that every valid plan π must satisfy. All operator-counting
constraints contain variables of the form Ya for each op-
erator a such that setting Ya to the number of occurrences
of a in π satisfies the constraints. In this paper, we adopt
the formalism and definitions of Pommerening et al. (2014)
for LP-based heuristics1. Definitions 2 and 3 formally de-
fine the concept of operator-counting constraints,and a plan-
ning heuristic based on operator-counting constraints (Pom-
merening et al. 2014).
Definition 2 (Operator-Counting Constraints). Let Π be
a planning instance with operator setA and let s be a reach-
able state in Π. Let Y be a set of non-negative real-valued
and integer variables, including an integer variable Ya for
each operator a ∈ A along with any number of additional
variables. The variables Ya are called operator-counting
variables. We say π is an s-plan in Π if it is a valid plan
that leads from a state s to a goal G. If π is an s-plan, we
denote the number of occurrences of operator a ∈ A in π
with Yπa . A set of linear inequalities overY is called an oper-
ator counting constraint for s if for every s-plan there exists
a feasible solution with Ya = Yπa for all a ∈ A. A con-
straint set for s is a set of operator-counting constraints for
s where the only common variables between constraints are
the operator-counting constraints.

Definition 3 (Operator-Counting IP/LP Heuristic). The
operator-counting integer program IPC for a set C of
operator-counting constraints for state s is

Minimize
∑
a∈A

Ya · cost(a) subject to

C and Ya ≥ 0 for all a ∈ A,

where A is the set of operators.

The IP heuristic hIP
C is the objective value of IPC , the LP

heuristic hLP
C is the objective value of its LP-relaxation. If

the IP/LP is infeasible, the heuristic estimate is∞.

While the framework from Pommerening, Röger, and
Helmert (2013) unifies many types of constraints for
operator-counting heuristics, we rely on three types
of constraints for our goal recognition approaches:

1The only difference between their formalism and ours is that
we refer to operators/actions with an a/A variable name to differ-
entiate it from the observations o/O



landmarks (Bonet and van den Briel 2014), state-
equations (van den Briel et al. 2007; Bonet 2013b), and post-
hoc optimization (Pommerening, Röger, and Helmert 2013).

3 LP-Based Heuristics for Goal Recognition
We now develop an LP-based metric suitable for goal recog-
nition. This metric basically adds a set of constraints to the
LP of the operator-counting framework that enforce that so-
lutions comply with all observations. We also use the infor-
mation generated by the solution of the LP do estimate the
number of missing observations. Thus, more missing obser-
vations lead to more relaxed criteria for our method to decide
which goals should be selected as the correct one.

3.1 Hard Constraints
To develop our LP-based metric, we start with a basic
operator-counting heuristic h(s), which we define over the
LP-heuristic of Definition 3 where C comprises the con-
straints generated by Landmarks, post-hoc optimization, and
net change constraints as described by Pommerening et
al. (2014). This heuristic yields important information about
each goal hypothesis including the actual operator counts Ya
for all a ∈ A from Definition 3, whose minimization com-
prises the objective function h(s). The heuristic value hG(s)
for every candidate goal G ∈ G tells us about the optimal
distance between the initial state I and G, while the opera-
tor counts indicate possible operators in a valid plan from I
to G.

The h heuristic can be used to compute a heuristic concep-
tually similar to the Goal Completion heuristic of Pereira,
Oren, and Meneguzzi (2017) if one tries to compare the op-
erator counts and the observations. However, inferring goals
using this overlap alone has a number of shortcomings in
relation to their technique. First, while the landmarks them-
selves are enforced by the LP used to compute the operator
counts (and thus observations that correspond to landmarks
count as hits), the overlap computation loses the ordering
of the landmarks that the Goal Completion heuristic uses
to account for missing observations. Second, a solution to a
set of operator-constraints, i.e., a set of operators with non-
negative counts may not be a feasible plan for a planning
instance. Third, if there are multiple valid plans to a goal hy-
pothesis, there is no guarantee that the operator counts will
actually correspond to the plan that generated the observa-
tions. Thus, these counts may not correspond to the plan that
generated the observations.

While operator-counting heuristics on their own are fast
and informative enough to help guide search when dealing
with millions of nodes, goal recognition problems often re-
quire the disambiguation of a dozen or less goal hypothe-
ses. Such goal hypotheses are often very similar so that the
operator-counting heuristic value (i.e., the objective function
over the operator counts) for each goal hypothesis is very
similar, especially if the goals are more or less equidistant
from the initial state.

Thus, we refine this heuristic by introducing additional
constraints into the LP used to compute operator counts.
Specifically, we force the operator counting heuristic to only

consider operator counts that include every single observa-
tion o ∈ O. The resulting LP heuristic (which we call hHC)
then minimizes the cost of the operator counts for plans that
necessarily agree with all observations.

We formally define these new constraints in Definition 4,
and proceed to define the hHC heuristic in Definition 5.
Definition 4 (Hard Constraints for Observations). Let ka
be the number of occurrences of observations of the opera-
tor a in the sequence of observation O for the goal recogni-
tion task T . The hard constraint chc,aT for operator a is

Ya ≥ ka

Definition 5 (hHC Heuristic). The integer program IPC
hc,a

C
for a set C of operator-counting constraints, and a set Chc,a
of hard constraints for observations for state s is a operator-
counting IPC augmented with a setChc,a of hard constraints
for observations. The LP heuristic hHC is the objective value
of its LP-relaxation.

3.2 Uncertainty
Up to this point, we have ignored a key challenge of goal
recognition consisting of the unreliability of the observa-
tions. In most realistic settings, observations will either be
noisy, incomplete, or both. Specifically, in settings where
observability is low and goal hypotheses have similar dis-
tances from the initial state of the goal recognition problem,
heuristically computed values will often agree. This limita-
tion is particularly evident in the approach of Pereira, Oren,
and Meneguzzi (2017), whose accuracy degrades substan-
tially with lower observability for a number of domains. Un-
surprisingly, the basic operator counting heuristic described
so far also suffers from this limitation in such situations,
as heuristic values for multiple goal hypotheses are either
equal or very similar. This happens because when comput-
ing the overlap of unconstrained h heuristic, there might be
a large number of possible solutions to the linear program
with a similar objective value. This, in turn, might make
these methods rule out the actual goal because of the spe-
cific solution returned by the LP-solver for h not having a
substantial overlap with O, especially if the number of ob-
servations in O is small due to missing observations of the
actual plan. However, as operator counting is an admissi-
ble heuristic, we know that the objective value for the con-
strained hHC heuristic is necessarily a lower bound on the
size of the optimal plan to achieve a specific goal hypothe-
sis, regardless of the individual operator count values. This
lower bound represents the minimal number of observations
we expect to have received if the algorithm is under full ob-
servation, and the difference between the IP objective func-
tion and the length of the observation sequence constitutes
the number of missing observations for a given goal recog-
nition task. These missing observations allow us to account
for a level of uncertainty in the expected value of the opera-
tor counts. In practice, we can compute an uncertainty ratio
as shown in Equation 1 and infer the level of observability of
a given goal recognition problem as we solve it, and return
more goal hypotheses besides the least-cost one.



U ← 1 +
minG h

G
HC − |O|

minG hGHC

(1)

Algorithm 1 brings the hHC heuristic and the notion of
uncertainty together to perform goal recognition. It starts
with the computation of the heuristic values for each goal
in Lines 2–8, consisting of generating the operator counting
constraints (Line 3), adding the constraints from Definition 4
(Lines 4–6) and computing hHC (Line 8). Finally, we com-
pute the uncertainty ratio using Equation 1 in Line 9 and
return all goals that have either the least hHC value, or are
within the uncertainty ratio of this value in Line 10.

Algorithm 1 Goal Recognition using Linear Programming.
Input: Ξ planning domain definition, I initial state, G set of can-
didate goals, and O observations.
Output: Recognized goal(s).
1: function RECOGNIZEGOALS(Ξ, I,G, O)
2: for all G ∈ G do . Compute heuristics for G
3: CG

HC ← GENERATECONSTRAINTS(Ξ, I, G)
4: for all o ∈ O do
5: ko ← Counto∈O

6: CG
HC ← CG

HC ∪ Yo > ko
7: IPG ← GENERATEIP(CG

HC, O)
8: hG

HC ← LPSOLVER(IPG)

9: U ← COMPUTEUNCERTAINTY(hHC, O)
10: return {G|G ∈ G ∧ hG

HC ≤ minG h
G
HC ∗ U}

3.3 Enforcement Delta
Although enforcing constraints to ensure that the LP heuris-
tic computes only plans that do contain all observations
helps us overcome the limitations of computing the overlap
of the operator counts, this approach has a major shortcom-
ing: it considers all observations as valid operators gener-
ated by the observed agent. Therefore, the heuristic result-
ing from the minimization of this LP might suffer from two
problems of increasing severity. First, it might overestimate
the actual length of the plan for the goal hypothesis due to
noise. Second, depending on the problem and on the do-
main, enforcing an invalid action might even make the LP
unsolvable. These problems may happen for one of two rea-
sons: either the noise is simply a sub-optimal operator in a
valid plan, or it is an operator that is completely unrelated
to the plan that generated the observations. In both cases,
the resulting heuristic value may prevent the algorithm from
selecting the actual goal from the goal hypotheses. Propo-
sition 1 states that this overestimation has the property that
hHC always dominates the operator counting heuristic h.

Proposition 1 (hHC dominates h). Let h be the basic
operator-counting heuristic, hHC be the over-constrained
heuristic from Definition 5 that accounts for all observations
o ∈ O, and s a state of Π. Then hHC(s) ≥ h(s).

Proof. Let Ch and ChHC be sets of constraints used to com-
pute, respectively, h(s) and hHC(s). Every feasible solution
to ChHC is a solution to Ch. This is because to generate ChHC

we only add constraints to Ch. Thus, a solution to ChHC has
to satisfy all constraints in Ch. Therefore, since we are solv-
ing a minimization problem the value of the solution for Ch
cannot be larger than the solution to ChHC .

Proposition 2. The set of goals returned by hHC with 100%
of the observations always contains the actual goal.

Proof. Suppose that the proposition is wrong. Hence there is
a goal recognition task where hHC with 100% of observations
does not return the actual goal. Suppose that the G is the
actual goal and that there are k observations thus hHC(G) =
k. Because the sequence of observations is a plan for k, and
every plan satisfies all constraints of the IP of hHC. If the
proposition is wrong, this means that for anotherG′ we have
hHC(G′) < hHC(G). However, a solution for the IP of hHC

has to satisfy all hard constraints for observations and cannot
cost less than k, which completes the proof.

The intuition here is that the operator-counting heuristic
h estimates the total cost of any optimal plan, regardless of
the observations, while hHC estimates a plan following all
observations, including noise, if any. If there is no noise, the
sum of the counts must agree (even if the counts are differ-
ent), whereas if there are noisy observations, there will be
differences in all counts. Thus, our last approach consists of
computing the difference between hHC and h, and infer that
the goal hypothesis for which these values are closer must be
the actual goal. We call the resulting heuristic as δHC and for-
malize this approach in Algorithm 2. Here, we compute the
LP twice, once with only the basic operator-counting con-
straints (Line 5), and once with the constraints enforcing the
observations in the operator counts (Line 10), using these
two values to compute δHC (Line 11). The algorithm then re-
turns goal hypotheses that minimize δHC (Line 13) while be-
ing within the uncertainty induced by missing observations
(Section 3.2). So, the combination of the heuristic δHC and
the uncertainty ratio is denoted as δHCU.

Algorithm 2 Goal Recognition using Heuristic Difference
of Operator Counts.
Input: Ξ planning domain definition, I initial state, G set of can-
didate goals, and O observations.
Output: Recognized goal(s).
1: function DELTARECOGNIZE(Ξ, I,G, O)
2: for all G ∈ G do . Compute δHC(I) for G
3: CG

HC ← CG ← GENERATECONSTRAINTS(Ξ, I, G)
4: IPG

C ← GENERATEIP(CG, O)
5: h← LPSOLVER(IPG

C )
6: for all o ∈ O do
7: ko ← Counto∈O

8: CG
HC ← CG

HC ∪ Yo > ko
9: IPG

C ← GENERATEIP(CG
HC, O)

10: hG
HC ← LPSOLVER(IPG

C )
11: δGHC ← hG

HC − h
12: U ← COMPUTEUNCERTAINTY(hG, O)
13: return {G|G ∈ G ∧ δGHC ≤ minG δ

G
HC ∗ U}



Figure 1: LP goal recognition example.

Example
Consider the example in Figure 1, where an agent can move
up, right, down, and left. The agent has two possible goals
G1 and G2, where the actual goal is G1 achieved using the
plan π = {o1, o2, o3, o4, o5, o6, o7} which is a non-optimal
plan. Also, in this example, we have a noisy observation o8
that is not part of the plan π. Suppose our method is given the
complete sequence of observations O = {o1, o2, . . . , o7},
and that our heuristic can always compute the cost of the
optimal path. Then, h(G1) = 3, h(G2) = 3, and the heuris-
tics that have to comply with all observations have the value
of hHC(G1) = 7 and hHC(G2) = 9. Thus, our δ values are
δHC(G1) = 4 and δHC(G2) = 6. In this situation, our method
would select the correct goal G1.

Now, consider the case where we have only one observa-
tion O = {o3}. Again, in this case our δ values would be
δHC(G1) = 4 and δHC(G2) = 6, and our method would se-
lect only G1. However, we believe that in this, we should
relax our decision because we have just one observation that
is not part of an optimal path for any goal. Thus, we intro-
duce uncertainty that for this case is U = 1 + 7−1

7 , and
now we would return the two goals. Last, if we increase the
number of observations provided to our method to four with
O = {o1, o2, o3, o4}. All values of our heuristics would re-
main the same, but our metric our uncertainty would change
to U = 1 + 7−4

7 since we were provided more observations
and we can be more confident of our decision. In this last
case, we would select only the correct actual goal.

4 Experiments and Evaluation
We now report on the experiments we carried out to evaluate
our LP-based heuristic approaches against the state-of-the-
art in goal recognition as planning.

4.1 Domains
We implemented each of the heuristics described earlier
and performed the goal recognition process over the large
dataset introduced by Pereira, Oren, and Meneguzzi (2017)2.
This dataset contains thousands of problems for goal and
plan recognition under varying levels of observability (with
optimal and suboptimal plans) for a number of traditional

2https://zenodo.org/record/825878

IPC domains (Vallati, Chrpa, and McCluskey 2018), includ-
ing BLOCKS-WORLD, CAMPUS, DEPOTS, DRIVERLOG,
Dock-Worker Robots (DWR), IPC-GRID, FERRY, Intru-
sion Detection (INTRUSION), KITCHEN, LOGISTICS, MI-
CONIC, ROVER, SATELLITE, SOKOBAN, and Zeno Travel
(ZENO). This dataset also contains over a thousand goal
recognition problems under partial observability and noisy
observations in the CAMPUS, IPC-GRID, INTRUSION and
KITCHEN domains.

To improve the experiments and evaluation for noisy ob-
servations, we extended the noisy dataset by creating new
goal recognition problems for the other domains with 2 ad-
ditional noisy actions for each level of observability, so with
this, we now have a dataset with noisy observations for the
same number of domains. For example, consider the average
of number observations |O| for DEPOTS for 25% of observ-
ability (Table 2), which is 4.4, so 2 of these 4.4 actions are
noisy (i.e., spurious actions), and so on for all levels of ob-
servability in the noisy dataset.

4.2 Setup
We implemented our approach using PYTHON 2.7 for the
main recognition algorithms with external calls to a cus-
tomized version of the FAST-DOWNWARD (Helmert 2006)
planning system3 to compute the operator counts. Our cus-
tomized planner not only returns the operator counts, but
can also introduce additional constraints before running the
CPLEX 12.9 optimization system. We ran experiments in
a single core of a 24 core Intel R© Xeon R© CPU E5-2620
@2.00Ghz with 48GB of RAM, with a 2-minute time limit
and a 2GB memory limit.

We note that, while the recognition time is competitive
with R&G 2009 (and indeed other approaches), it can be
substantially improved by implementing the operator count-
ing heuristic within the main recognizer rather than relying
on multiple calls to an external planner.

4.3 Benchmark
To evaluate the effectiveness of our heuristic approaches
(δSC and δHCU), the baselines of our experimentation are the
original approach from Ramı́rez and Geffner (2009) (R&G
2009) and the recent recognition heuristics from Pereira,
Oren, and Meneguzzi (2017) (POM 2017 hgc and POM
2017 huniq ). Due to timeout and parsing issues that some
approaches have faced during the experiments, we decided
to show the comparison against such approaches (E-Martı́n,
R.-Moreno, and Smith 2015; Sohrabi, Riabov, and Udrea
2016; Vered et al. 2018) in the supplement.

Table 1 shows the experimental results for the partially
observable, non-noisy fragment of the dataset, whereas Ta-
ble 2 shows the noisy fragment of the same dataset. For
the noisy experiments, every sequence of observations con-
tained at least 2 noisy (spurious) actions, which, while valid
for the plan, were not actually executed by the agent being
observed during the recognition process. Both tables show
the number of recognition problems under the domain name,
the average number of candidate goals |G|, and the average

3Revision 12828 from https://www.fast-downward.org



number of observations |O|. For evaluation, we used three
metrics: recognition time in seconds (Time); accuracy – the
fraction of times in which the actual hidden goals has been
recognized correctly (Acc %); and spread in G – the average
number of returned goals (S in G). At the bottom of Tables 1
and 2, we provide the average for evaluated metrics we used
over all domains and problems in the datasets.

The results in Tables 1 and 2 show that, while not nearly as
fast as the heuristics approaches (POM 2017 hgc and POM
2017 huniq ) from Pereira, Oren, and Meneguzzi with a
θ = 0 recognition threshold, the accuracy (Acc %) of our
δHC approach is either competitive or superior in virtually
all domains (except for some levels of observability in IPC-
GRID and DWR), and, even for the domains where the ac-
curacy is similar, or lower, the spread (S in G) of the result-
ing goals is very competitive against these landmark-based
heuristics, i.e., the returned goals are unique for most prob-
lems. The accuracy of our approach with and without un-
certainty (δHC and δHCU), thus, consistently matches or sur-
passes that of R&G 2009 for most domains and problems.
Importantly, the cost of our approach is basically the same
within each domain, regardless of the level of observabil-
ity and noise, since our techniques rely on a single call to a
planner that computes the operator counts for a single state
and then stops the planner.

We note that the results for noisy observations (Table 2)
show the greatest impact of our LP-based heuristics, espe-
cially δHC, showing an overall higher accuracy and lower
spread across all domains. It is possible to see that δHC sur-
passes all other evaluated approaches in accuracy and spread
when dealing with noisy observations. Thus, our LP-based
heuristics show their effectiveness not only for dealing with
partial and full observable plans (Table 1), but also for deal-
ing with noisy, partial, and full observations (Table 2).

5 Related Work
Our LP-based heuristics follow the tradition of goal and plan
recognition as planning algorithms as defined by Ramı́rez
and Geffner (2009; 2010). The work developed by Ramı́rez
and Geffner (2009) yields higher recognition accuracy in our
settings (and hence we chose it as a baseline), whereas the
work of Ramı́rez and Geffner (2010) models goal recog-
nition as a problem of estimating the probability of a goal
given the observations. The latter work uses a Bayesian
framework to compute the probability of goals given obser-
vations by computing the probability of generating a plan
given a goal, which they accomplish by running a planner
multiple times to estimate the probability of the plans that
either comply or not with the observations. By contrast, we
do not try to provide a probabilistic interpretation for the
recognized hypotheses.

Recent research on goal recognition has yielded a number
of approaches to deal with partial observability and noisy
observations, of which we single out three key contribu-
tions. First, E-Martı́n, R.-Moreno, and Smith (2015) devel-
oped a goal recognition approach based on constructing a
planning graph and propagating operator costs and the inter-
action among operators to provide an estimate of the prob-
abilities of each goal hypothesis. While their approach pro-

vides probabilistic estimates for each goal, its precision in
inferring the most likely goals is consistently lower than
ours, often ranking multiple goals with equal probabilities
(i.e., having a large spread). Second, Sohrabi, Riabov, and
Udrea (2016) develop an approach that also provides a prob-
abilistic interpretation and explicitly deals with missing and
noisy observations by adding weights in the domain descrip-
tion. Their approach works through a compilation of the
recognition problem into a planning problem that is pro-
cessed by a planner that computes a number of approxi-
mately optimal plans to compute goal probabilities under
R&G’s Bayesian framework (Ramı́rez and Geffner 2010).
Third, Masters and Sardiña (2017) developed a fast and ac-
curate approach to goal recognition that works strictly in
the context of path-planning, providing a new probabilis-
tic framework for goal recognition in path planning. Finally,
Pereira, Oren, and Meneguzzi (2017) develop heuristic goal
recognition approaches using landmark information. While
the approach of Pereira, Oren, and Meneguzzi is conceptu-
ally closer to ours in that we also compute heuristics, our
approach is distinct and novel in at least two ways: 1) we
overcome the sparsity of landmarks in most domain by us-
ing operator-count information; and 2) we explicitly handle
partial observability by estimating the missing observations.
Whereas their approach tries to overcome low accuracy un-
der low observability by introducing a θ parameter to re-
lax the number of goals ranked as most likely, we automati-
cally infer this relaxation by computing an uncertainty ratio.
The result is that our approach consistently outperforms both
their heuristics at low observability, especially at low (10%)
observability. Finally, while we do not explicitly try to over-
come noise with the constraints, we prove to be substantially
more accurate than the state-of-the-art when dealing with
noisy observations.

6 Conclusions
In this paper, we develop a novel class of goal recognition
techniques based on operator-counting heuristics from clas-
sical planning (Pommerening et al. 2014) which, themselves
rely on Integer LP constraints to estimate which operators
occur in valid optimal plans towards a goal. The resulting
heuristic approach outperforms the state-of-the-art in terms
of high accuracy and low false positive rate (i.e., the spread
of returned goals), at a moderate computational cost (i.e.,
recognition time). We have shown empirically that the over-
all accuracy of our approach is substantially higher to the
state-of-the-art over a large dataset with noisy, partial, and
full observable plans.

The technique described in this paper uses a set of sim-
ple additional constraints in the Integer LP formulation to
improve performance, so we expect substantial future work
towards further goal recognition approaches and heuris-
tics that explore more refined constraints to improve accu-
racy and reduce spread, as well as deriving a probabilis-
tic approach using operator-counting information. Exam-
ples of such work include using the constraints to force
the LP to generate the counterfactual operator-counts (i.e.,
non-compliant with the observations) used by the R&G ap-
proach, or, given an estimate of the noise, relax the obser-



Partial and Full Observability

δHC δHCU R&G 2009 POM 2017 hgc POM 2017 huniq
# |G| % Obs |O| Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G

B
L

O
C

K
S

(1
07

6)

20.3

10 1.8 11.575 95.5% 7.81 11.574 95.9% 8.7 1.222 86.8% 7.84 0.144 39.9% 1.05 0.131 31.7% 1.04
30 4.9 11.570 89.4% 2.79 11.567 94.3% 5.12 1.639 87.2% 3.57 0.156 50.6% 1.09 0.144 51.4% 1.06
50 7.6 11.581 92.7% 1.78 11.587 93.9% 3.24 2.402 97.9% 2.63 0.179 65.0% 1.09 0.168 60.1% 1.08
70 11.1 11.594 98.8% 1.41 11.595 98.8% 1.8 3.785 97.5% 1.83 0.192 84.8% 1.12 0.184 79.0% 1.14
100 14.5 11.904 100.0% 1.21 11.937 100.0% 1.21 6.791 100.0% 1.46 0.246 100.0% 1.36 0.239 100.0% 1.09

D
E

P
O

T
S

(3
64

)

8.5

10 3.1 8.299 61.9% 2.15 8.305 71.4% 3.51 1.496 77.4% 3.99 0.369 35.7% 1.18 0.393 32.1% 1.1
30 8.6 8.292 71.4% 1.4 8.298 88.1% 4.17 2.309 77.4% 2.39 0.357 58.3% 1.06 0.393 47.6% 1.07
50 14.1 8.282 92.9% 1.38 8.280 98.8% 3.65 3.411 84.5% 1.92 0.369 76.2% 1.06 0.405 71.4% 1.02
70 19.7 8.282 97.6% 1.06 8.279 98.8% 1.75 5.271 91.7% 1.68 0.393 89.3% 1.01 0.444 84.5% 1.01
100 24.4 8.296 100.0% 1.0 8.296 100.0% 1.0 7.117 92.9% 1.46 0.464 100.0% 1.04 0.502 100.0% 1.04

D
R

IV
E

R
L

O
G

(3
64

)

10.5

10 2.6 5.159 77.4% 2.61 5.168 78.6% 3.17 1.169 96.4% 4.71 0.333 41.7% 1.04 0.321 35.7% 1.11
30 6.9 5.149 83.3% 1.69 5.163 91.7% 2.76 1.411 92.9% 3.35 0.311 54.8% 1.13 0.310 47.6% 1.1
50 11.1 5.167 92.9% 1.23 5.146 97.6% 2.0 1.694 94.0% 2.88 0.321 72.6% 1.17 0.310 64.3% 1.14
70 15.6 5.148 95.2% 1.14 5.146 95.2% 1.5 1.973 89.3% 2.46 0.333 90.5% 1.14 0.321 90.5% 1.17
100 21.7 5.166 100.0% 1.04 5.157 100.0% 1.04 2.821 89.3% 2.14 0.321 100.0% 1.21 0.321 100.0% 1.18

D
W

R
(3

64
)

7.3

10 5.7 5.759 54.8% 2.21 5.745 95.2% 5.45 1.767 83.3% 4.21 0.452 36.9% 1.1 0.512 33.3% 1.06
30 16.0 5.745 83.3% 1.58 5.753 100.0% 4.92 2.723 81.0% 3.35 0.452 60.7% 1.04 0.504 51.2% 1.06
50 26.2 5.742 90.5% 1.21 5.734 100.0% 3.98 4.822 72.6% 2.27 0.488 66.7% 1.0 0.548 61.9% 1.01
70 36.8 5.752 97.6% 1.07 5.735 100.0% 2.26 10.914 70.2% 2.05 0.536 89.3% 1.0 0.607 78.6% 1.05
100 51.9 5.763 100.0% 1.0 5.75 100.0% 1.0 25.092 67.9% 1.68 0.643 100.0% 1.0 0.751 96.4% 1.04

IP
C

-G
R

ID
(6

73
)

9.0

10 2.9 6.216 92.8% 1.92 6.209 94.8% 2.32 1.091 96.1% 2.46 0.248 66.7% 2.58 0.242 62.7% 2.58
30 7.8 6.051 95.4% 1.29 6.044 98.0% 1.48 1.476 97.4% 1.42 0.242 81.7% 1.65 0.242 83.7% 1.66
50 12.7 6.123 98.7% 1.11 6.122 100.0% 1.25 1.905 100.0% 1.16 0.261 90.8% 1.18 0.248 90.8% 1.18
70 17.9 6.251 99.4% 1.1 6.259 100.0% 1.19 2.552 100.0% 1.05 0.268 97.4% 1.07 0.268 97.4% 1.07
100 24.8 5.825 100.0% 1.03 5.826 100.0% 1.03 4.057 100.0% 1.0 0.262 100.0% 1.0 0.262 100.0% 1.0

F
E

R
R

Y
(3

64
)

7.5

10 2.9 4.201 100.0% 3.17 4.201 100.0% 3.2 0.491 98.8% 3.37 0.071 58.3% 1.26 0.071 58.3% 1.18
30 7.6 4.072 100.0% 1.56 4.075 100.0% 1.76 0.677 100.0% 1.76 0.061 85.7% 1.12 0.060 83.3% 1.06
50 12.3 4.141 100.0% 1.29 4.141 100.0% 1.44 0.795 100.0% 1.42 0.062 95.2% 1.07 0.060 91.7% 1.01
70 17.3 4.199 100.0% 1.1 4.197 100.0% 1.12 1.253 98.8% 1.14 0.071 100.0% 1.01 0.071 100.0% 1.0
100 24.2 4.196 100.0% 1.07 4.204 100.0% 1.07 1.631 100.0% 1.07 0.071 100.0% 1.0 0.071 100.0% 1.0

L
O

G
IS

T
IC

S
(6

73
)

10.5

10 2.9 6.792 100.0% 2.5 6.789 100.0% 2.8 1.201 99.3% 2.98 0.641 55.6% 1.73 0.641 49.0% 1.24
30 8.2 6.953 98.0% 1.3 6.944 98.0% 1.76 1.799 98.7% 1.39 0.621 80.4% 1.21 0.634 76.5% 1.12
50 13.4 6.944 98.7% 1.13 6.959 98.7% 1.37 2.509 98.7% 1.29 0.641 90.2% 1.1 0.647 86.3% 1.05
70 18.9 6.938 100.0% 1.08 6.951 100.0% 1.15 3.461 100.0% 1.13 0.667 96.7% 1.06 0.661 96.7% 1.02
100 26.5 6.632 100.0% 1.0 6.633 100.0% 1.0 4.832 100.0% 1.0 0.607 100.0% 1.0 0.607 100.0% 1.0

M
IC

O
N

IC
(3

64
)

6.0

10 3.9 4.905 100.0% 2.12 4.886 100.0% 2.29 0.813 100.0% 3.26 0.464 67.9% 1.33 0.352 54.8% 1.26
30 11.1 4.897 100.0% 1.19 4.895 100.0% 1.46 1.191 100.0% 1.58 0.452 96.4% 1.11 0.364 90.5% 1.08
50 18.1 4.901 100.0% 1.1 4.891 100.0% 1.32 1.722 100.0% 1.29 0.452 96.4% 1.01 0.352 96.4% 1.0
70 25.3 4.892 100.0% 1.01 4.891 100.0% 1.02 2.591 100.0% 1.04 0.452 100.0% 1.01 0.376 100.0% 1.01
100 35.6 4.894 100.0% 1.0 4.894 100.0% 1.0 5.107 100.0% 1.0 0.464 100.0% 1.0 0.364 100.0% 1.0

R
O

V
E

R
S

(3
64

)

6.0

10 3.0 4.863 98.8% 2.71 4.858 100.0% 2.94 0.745 98.8% 2.86 0.348 64.3% 1.73 0.371 51.2% 1.11
30 7.9 4.881 85.7% 1.17 4.871 91.7% 1.83 1.031 100.0% 1.67 0.348 83.3% 1.24 0.348 69.0% 1.07
50 12.7 4.870 98.8% 1.14 4.856 98.8% 1.44 1.345 100.0% 1.3 0.336 92.9% 1.08 0.348 85.7% 1.01
70 17.9 4.858 98.8% 1.01 4.838 98.8% 1.06 1.177 100.0% 1.07 0.348 98.8% 1.01 0.362 91.7% 1.0
100 24.9 4.823 100.0% 1.0 4.884 100.0% 1.0 2.298 100.0% 1.07 0.371 100.0% 1.0 0.571 100.0% 1.0

S
A

T
E

L
L

IT
E

(3
64

)

6.5

10 2.1 5.196 91.7% 2.73 5.204 92.9% 2.92 1.076 97.6% 3.42 0.451 57.1% 1.56 0.450 47.6% 1.21
30 5.4 5.178 92.9% 1.76 5.201 96.4% 2.31 1.183 97.6% 2.4 0.451 76.2% 1.31 0.414 69.0% 1.14
50 8.7 5.197 96.4% 1.32 5.194 98.8% 1.77 1.328 97.6% 1.69 0.426 85.7% 1.1 0.414 81.0% 1.11
70 12.2 5.191 97.6% 1.11 5.193 97.6% 1.21 1.841 96.4% 1.52 0.402 97.6% 1.02 0.414 94.0% 1.04
100 16.8 5.212 100.0% 1.07 5.205 100.0% 1.07 2.045 96.4% 1.32 0.414 100.0% 1.07 0.414 100.0% 1.07

S
O

K
O

B
A

N
(3

64
)

7.3

10 3.1 7.827 72.6% 1.61 7.849 78.6% 2.39 3.153 69.0% 4.02 0.607 53.6% 2.06 0.607 51.2% 1.86
30 8.7 7.744 89.3% 1.11 7.742 95.2% 1.75 4.622 89.3% 4.17 0.595 57.1% 1.37 0.607 56.0% 1.21
50 14.1 7.701 95.2% 1.08 7.709 100.0% 1.46 7.441 89.3% 4.11 0.595 71.4% 1.32 0.607 69.0% 1.2
70 19.8 7.690 97.6% 1.04 7.677 98.8% 1.15 9.877 89.3% 4.18 0.608 83.3% 1.05 0.607 86.9% 1.08
100 35.5 7.671 100.0% 1.0 7.658 100.0% 1.0 12.996 89.3% 4.54 0.607 100.0% 1.0 0.643 100.0% 1.0

Z
E

N
O

(3
64

)

7.5

10 2.6 6.843 86.9% 2.71 6.871 88.1% 3.12 1.814 96.4% 3.4 0.567 39.3% 1.11 0.555 36.9% 1.05
30 6.7 6.838 90.5% 1.61 6.854 96.4% 2.56 2.539 88.1% 2.12 0.555 70.2% 1.15 0.531 60.7% 1.02
50 10.8 6.845 95.2% 1.15 6.851 96.4% 1.83 3.079 92.9% 1.42 0.543 78.6% 1.07 0.555 76.2% 1.0
70 15.2 6.855 100.0% 1.0 6.851 100.0% 1.04 3.907 96.4% 1.13 0.567 97.6% 1.05 0.555 90.5% 1.0
100 21.1 6.852 100.0% 1.0 6.842 100.0% 1.0 4.866 100.0% 1.07 0.543 100.0% 1.0 0.543 100.0% 1.0

Average 6.456 94.11% 1.55 6.457 96.94% 2.14 3.322 93.38% 2.30 0.397 79.66% 1.18 0.400 75.87% 1.12

Table 1: Experimental results comparing our lp-based heuristics against the state-of-the-art under partial, and full observable plans.

Noisy, Partial, and Full Observability

δHC δHCU R&G 2009 POM 2017 hgc POM 2017 huniq
# |G| % Obs |O| Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G

B
L

O
C

K
S

(1
44

)

20.3
25 2.4 16.033 58.3% 6.22 16.019 75.0% 10.39 1.045 38.9% 5.39 0.083 2.8% 1.22 0.083 8.3% 1.0
50 4.4 12.626 52.8% 3.31 12.675 88.9% 12.44 1.122 52.8% 4.61 0.083 25.0% 1.19 0.083 13.9% 1.08
75 6.8 11.282 80.6% 2.11 11.235 91.7% 7.36 1.405 75.0% 2.72 0.056 47.2% 1.19 0.056 38.9% 1.25
100 8.8 10.576 88.9% 1.92 10.629 97.2% 2.86 1.652 86.1% 2.03 0.083 77.8% 1.36 0.056 75.0% 1.33

D
E

P
O

T
S

(1
44

)

9.3
25 4.4 11.495 52.8% 2.19 11.445 63.9% 4.47 0.284 5.6% 9.17 0.528 38.9% 1.64 0.528 27.8% 1.22
50 8.4 10.299 61.1% 1.67 10.263 83.3% 4.14 0.189 0.0% 9.33 0.472 52.8% 1.22 0.472 41.7% 1.19
75 12.7 8.671 88.9% 1.19 8.674 94.4% 2.14 0.361 11.1% 8.28 0.472 80.6% 1.11 0.500 75.0% 1.06
100 16.2 8.098 94.4% 1.19 8.075 91.7% 1.22 0.292 5.6% 8.83 0.472 88.9% 1.11 0.472 86.1% 1.11

D
R

IV
E

R
L

O
G

(1
44

)

6.6
25 3.5 5.383 55.6% 2.61 5.362 83.3% 4.69 0.234 44.4% 5.89 0.111 36.1% 1.33 0.111 25.0% 1.08
50 6.7 4.982 77.8% 1.72 4.971 91.7% 3.47 0.282 38.9% 4.72 0.083 58.3% 1.28 0.083 52.8% 1.11
75 10.0 4.825 86.1% 1.25 4.855 94.4% 2.31 0.239 30.6% 5.47 0.083 61.1% 1.33 0.111 52.8% 1.14
100 12.8 4.511 97.2% 1.31 4.511 97.2% 1.64 0.358 44.4% 4.42 0.084 94.4% 1.47 0.083 97.2% 1.42

D
W

R
(1

44
)

7.0
25 9.2 7.546 72.2% 2.0 7.614 97.2% 5.11 0.808 41.7% 5.67 0.444 44.4% 1.14 0.501 33.3% 1.0
50 17.8 7.108 80.6% 1.67 7.153 94.4% 4.47 1.569 22.2% 5.39 0.417 63.9% 1.08 0.444 50.0% 1.06
75 26.6 6.509 91.7% 1.22 6.482 94.4% 1.78 2.793 19.4% 5.5 0.417 94.4% 1.06 0.472 69.4% 1.08
100 34.9 5.803 100.0% 1.08 5.768 97.2% 1.06 7.392 30.6% 4.42 0.444 94.4% 1.0 0.472 94.4% 1.03

IP
C

-G
R

ID
(3

00
)

8.3
25 4.0 7.871 81.1% 1.67 7.889 85.6% 2.61 0.265 12.2% 7.56 0.244 58.9% 1.78 0.233 53.3% 1.72
50 7.7 6.031 94.4% 1.14 6.011 94.4% 1.71 0.240 4.4% 8.07 0.222 85.6% 1.33 0.211 83.3% 1.32
75 11.5 5.481 98.9% 1.1 5.497 97.8% 1.13 0.223 6.7% 7.89 0.213 94.4% 1.09 0.211 94.4% 1.09
100 16.9 5.011 100.0% 1.0 4.988 90.0% 0.9 0.266 10.0% 7.77 0.202 100.0% 1.0 0.200 100.0% 1.0

F
E

R
R

Y
(1

44
)

7.0
25 5.8 4.745 80.6% 2.78 4.736 86.1% 5.11 0.256 75.0% 2.92 0.028 47.2% 1.28 0.028 27.8% 1.08
50 11.2 4.402 97.2% 1.72 4.365 97.2% 3.83 0.375 94.4% 1.94 0.028 88.9% 1.31 0.028 77.8% 1.06
75 16.6 4.236 94.4% 1.56 4.223 97.2% 2.42 0.585 88.9% 1.53 0.030 97.2% 1.17 0.028 83.3% 1.08
100 21.9 4.187 97.2% 1.17 4.183 97.2% 1.17 0.906 97.2% 1.25 0.029 100.0% 1.08 0.028 97.2% 1.06

L
O

G
IS

T
IC

S
(1

44
)

10.0
25 4.8 7.461 91.7% 2.11 7.446 97.2% 3.42 0.203 5.6% 9.42 0.223 61.1% 1.56 0.222 38.9% 1.08
50 9.4 6.875 97.2% 1.11 6.848 97.2% 1.36 0.214 5.6% 9.33 0.194 83.3% 1.17 0.167 75.0% 1.06
75 14.1 6.253 100.0% 1.03 6.234 100.0% 1.06 0.259 13.9% 8.78 0.194 97.2% 1.0 0.167 100.0% 1.03
100 18.1 5.436 100.0% 1.08 5.438 100.0% 1.08 0.321 13.9% 8.78 0.195 100.0% 1.06 0.194 100.0% 1.03

M
IC

O
N

IC
(1

44
)

6.0
25 4.4 4.892 52.8% 1.97 4.908 83.3% 4.17 0.318 88.9% 2.89 0.111 50.0% 1.39 0.111 33.3% 1.17
50 8.4 4.533 80.6% 1.17 4.566 97.2% 2.17 0.387 100.0% 1.75 0.083 83.3% 1.11 0.083 80.6% 1.11
75 12.6 4.387 91.7% 1.06 4.379 100.0% 1.31 0.483 100.0% 1.19 0.083 97.2% 1.03 0.083 88.9% 1.03
100 16.3 4.294 100.0% 1.03 4.311 100.0% 1.08 0.628 100.0% 1.0 0.056 100.0% 1.0 0.056 100.0% 1.0

R
O

V
E

R
S

(1
44

)

6.0
25 3.1 5.346 72.2% 2.22 5.359 75.0% 2.78 0.264 33.3% 4.78 0.083 52.8% 1.14 0.083 50.0% 1.14
50 5.7 4.973 80.6% 1.61 4.941 88.9% 2.92 0.296 50.0% 3.81 0.056 69.4% 1.31 0.056 58.3% 1.08
75 8.4 4.889 91.7% 1.14 4.905 100.0% 1.47 0.301 44.4% 3.92 0.083 86.1% 1.14 0.056 75.0% 1.08
100 10.8 4.513 100.0% 1.03 4.531 100.0% 1.03 0.305 38.9% 4.06 0.083 97.2% 1.11 0.056 86.1% 1.03

S
A

T
E

L
L

IT
E

(1
44

)

6.0
25 3.3 4.511 75.0% 3.31 4.444 88.9% 4.28 0.224 58.3% 4.53 0.056 52.8% 2.42 0.056 30.6% 1.33
50 5.7 4.056 72.2% 2.44 4.091 83.3% 3.92 0.255 72.2% 3.58 0.028 72.2% 2.08 0.028 44.4% 1.31
75 8.4 3.915 83.3% 1.44 3.966 88.9% 2.83 0.292 77.8% 2.75 0.028 80.6% 1.28 0.028 69.4% 1.08
100 10.7 3.929 94.4% 1.47 3.935 94.4% 1.86 0.298 72.2% 3.0 0.056 94.4% 1.31 0.028 91.7% 1.19

S
O

K
O

B
A

N
(1

44
)

8.6
25 5.3 13.104 36.1% 1.64 13.101 72.2% 4.69 1.953 25.0% 7.28 0.751 41.7% 1.75 0.750 38.9% 1.56
50 10.3 11.319 50.0% 1.17 11.323 58.3% 1.94 2.086 19.4% 6.67 0.667 66.7% 1.44 0.694 58.3% 1.08
75 15.6 9.527 36.1% 1.0 9.461 36.1% 0.56 2.121 19.4% 7.69 0.694 80.6% 1.28 0.667 72.2% 1.03
100 20.1 8.946 33.3% 1.11 9.029 36.1% 0.5 5.878 33.3% 6.47 0.694 94.4% 1.22 0.694 86.1% 1.06

Z
E

N
O

(1
44

)

6.6
25 3.0 8.209 44.4% 2.72 8.271 80.6% 5.25 0.946 72.2% 3.92 0.417 55.6% 1.92 0.417 33.3% 1.03
50 5.8 7.712 91.7% 1.61 7.653 97.2% 4.03 1.025 88.9% 1.78 0.361 77.8% 1.67 0.361 61.1% 1.08
75 8.8 6.785 91.7% 1.08 6.766 100.0% 2.44 1.167 100.0% 1.22 0.361 88.9% 1.25 0.361 77.8% 1.0
100 11.3 6.177 97.2% 1.0 6.141 100.0% 1.42 1.289 97.2% 1.08 0.361 97.2% 1.08 0.333 97.2% 1.03

Average 6.870 80.14% 1.69 6.868 88.68% 3.04 0.929 47.22% 5.01 0.236 73.21% 1.30 0.234 64.71% 1.13

Table 2: Experimental results comparing our LP-based heuristics against the state-of-the-art under noisy, partial, and full observable plans.



vation constraints to discard observations from the resulting
operator-counts. Finally, we argue that casting goal recog-
nition as an ILP problem is both natural, and a promising
avenue for further research not only in symbolic (STRIPS-
like) domains, but also for path planning and continuous do-
mains (Masters and Sardiña 2017).
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